MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfrdOLD Structured version   Visualization version   GIF version

Theorem nfrdOLD 2178
Description: Obsolete proof of nf5rd 2054 as of 6-Oct-2021. (Contributed by Mario Carneiro, 11-Aug-2016.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
nfrdOLD.1 (𝜑 → Ⅎ𝑥𝜓)
Assertion
Ref Expression
nfrdOLD (𝜑 → (𝜓 → ∀𝑥𝜓))

Proof of Theorem nfrdOLD
StepHypRef Expression
1 nfrdOLD.1 . 2 (𝜑 → Ⅎ𝑥𝜓)
2 nfrOLD 2176 . 2 (Ⅎ𝑥𝜓 → (𝜓 → ∀𝑥𝜓))
31, 2syl 17 1 (𝜑 → (𝜓 → ∀𝑥𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1473  wnfOLD 1700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-12 2034
This theorem depends on definitions:  df-bi 196  df-ex 1696  df-nfOLD 1712
This theorem is referenced by:  alrimddOLD  2183  nfdiOLD  2213  nfim1OLD  2216  hbimdOLD  2218  nfan1OLD  2224
  Copyright terms: Public domain W3C validator