MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfnfc1 Structured version   Visualization version   GIF version

Theorem nfnfc1 2754
Description: The setvar 𝑥 is bound in 𝑥𝐴. (Contributed by Mario Carneiro, 11-Aug-2016.)
Assertion
Ref Expression
nfnfc1 𝑥𝑥𝐴

Proof of Theorem nfnfc1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-nfc 2740 . 2 (𝑥𝐴 ↔ ∀𝑦𝑥 𝑦𝐴)
2 nfnf1 2018 . . 3 𝑥𝑥 𝑦𝐴
32nfal 2139 . 2 𝑥𝑦𝑥 𝑦𝐴
41, 3nfxfr 1771 1 𝑥𝑥𝐴
Colors of variables: wff setvar class
Syntax hints:  wal 1473  wnf 1699  wcel 1977  wnfc 2738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034
This theorem depends on definitions:  df-bi 196  df-or 384  df-tru 1478  df-ex 1696  df-nf 1701  df-nfc 2740
This theorem is referenced by:  vtoclgft  3227  vtoclgftOLD  3228  sbcralt  3477  sbcrext  3478  sbcrextOLD  3479  csbiebt  3519  nfopd  4357  nfimad  5394  nffvd  6112  nfded  33272  nfded2  33273  nfunidALT2  33274
  Copyright terms: Public domain W3C validator