MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfnf1OLDOLD Structured version   Visualization version   GIF version

Theorem nfnf1OLDOLD 2196
Description: Obsolete proof of nfnf1 2018 as of 6-Oct-2021. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
nfnf1OLDOLD 𝑥𝑥𝜑

Proof of Theorem nfnf1OLDOLD
StepHypRef Expression
1 df-nfOLD 1712 . 2 (Ⅎ𝑥𝜑 ↔ ∀𝑥(𝜑 → ∀𝑥𝜑))
2 nfa1OLDOLD 2195 . 2 𝑥𝑥(𝜑 → ∀𝑥𝜑)
31, 2nfxfrOLD 1825 1 𝑥𝑥𝜑
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1473  wnfOLD 1700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-12 2034
This theorem depends on definitions:  df-bi 196  df-or 384  df-ex 1696  df-nf 1701  df-nfOLD 1712
This theorem is referenced by:  nfntOLD  2197  nfimdOLD  2214
  Copyright terms: Public domain W3C validator