Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfned | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for inequality. (Contributed by NM, 10-Nov-2007.) (Revised by Mario Carneiro, 7-Oct-2016.) |
Ref | Expression |
---|---|
nfned.1 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
nfned.2 | ⊢ (𝜑 → Ⅎ𝑥𝐵) |
Ref | Expression |
---|---|
nfned | ⊢ (𝜑 → Ⅎ𝑥 𝐴 ≠ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne 2782 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
2 | nfned.1 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
3 | nfned.2 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝐵) | |
4 | 2, 3 | nfeqd 2758 | . . 3 ⊢ (𝜑 → Ⅎ𝑥 𝐴 = 𝐵) |
5 | 4 | nfnd 1769 | . 2 ⊢ (𝜑 → Ⅎ𝑥 ¬ 𝐴 = 𝐵) |
6 | 1, 5 | nfxfrd 1772 | 1 ⊢ (𝜑 → Ⅎ𝑥 𝐴 ≠ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1475 Ⅎwnf 1699 Ⅎwnfc 2738 ≠ wne 2780 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-ext 2590 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-ex 1696 df-nf 1701 df-cleq 2603 df-nfc 2740 df-ne 2782 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |