MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfitg1 Structured version   Visualization version   GIF version

Theorem nfitg1 23346
Description: Bound-variable hypothesis builder for an integral. (Contributed by Mario Carneiro, 28-Jun-2014.)
Assertion
Ref Expression
nfitg1 𝑥𝐴𝐵 d𝑥

Proof of Theorem nfitg1
Dummy variables 𝑘 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-itg 23198 . 2 𝐴𝐵 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑘))) / 𝑧if((𝑥𝐴 ∧ 0 ≤ 𝑧), 𝑧, 0))))
2 nfcv 2751 . . 3 𝑥(0...3)
3 nfcv 2751 . . . 4 𝑥(i↑𝑘)
4 nfcv 2751 . . . 4 𝑥 ·
5 nfcv 2751 . . . . 5 𝑥2
6 nfmpt1 4675 . . . . 5 𝑥(𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑘))) / 𝑧if((𝑥𝐴 ∧ 0 ≤ 𝑧), 𝑧, 0))
75, 6nffv 6110 . . . 4 𝑥(∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑘))) / 𝑧if((𝑥𝐴 ∧ 0 ≤ 𝑧), 𝑧, 0)))
83, 4, 7nfov 6575 . . 3 𝑥((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑘))) / 𝑧if((𝑥𝐴 ∧ 0 ≤ 𝑧), 𝑧, 0))))
92, 8nfsum 14269 . 2 𝑥Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑘))) / 𝑧if((𝑥𝐴 ∧ 0 ≤ 𝑧), 𝑧, 0))))
101, 9nfcxfr 2749 1 𝑥𝐴𝐵 d𝑥
Colors of variables: wff setvar class
Syntax hints:  wa 383  wcel 1977  wnfc 2738  csb 3499  ifcif 4036   class class class wbr 4583  cmpt 4643  cfv 5804  (class class class)co 6549  cr 9814  0cc0 9815  ici 9817   · cmul 9820  cle 9954   / cdiv 10563  3c3 10948  ...cfz 12197  cexp 12722  cre 13685  Σcsu 14264  2citg2 23191  citg 23193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-seq 12664  df-sum 14265  df-itg 23198
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator