MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfiotad Structured version   Visualization version   GIF version

Theorem nfiotad 5771
Description: Deduction version of nfiota 5772. (Contributed by NM, 18-Feb-2013.)
Hypotheses
Ref Expression
nfiotad.1 𝑦𝜑
nfiotad.2 (𝜑 → Ⅎ𝑥𝜓)
Assertion
Ref Expression
nfiotad (𝜑𝑥(℩𝑦𝜓))

Proof of Theorem nfiotad
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dfiota2 5769 . 2 (℩𝑦𝜓) = {𝑧 ∣ ∀𝑦(𝜓𝑦 = 𝑧)}
2 nfv 1830 . . . 4 𝑧𝜑
3 nfiotad.1 . . . . 5 𝑦𝜑
4 nfiotad.2 . . . . . . 7 (𝜑 → Ⅎ𝑥𝜓)
54adantr 480 . . . . . 6 ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥𝜓)
6 nfcvf 2774 . . . . . . . 8 (¬ ∀𝑥 𝑥 = 𝑦𝑥𝑦)
76adantl 481 . . . . . . 7 ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → 𝑥𝑦)
8 nfcvd 2752 . . . . . . 7 ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → 𝑥𝑧)
97, 8nfeqd 2758 . . . . . 6 ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥 𝑦 = 𝑧)
105, 9nfbid 1820 . . . . 5 ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥(𝜓𝑦 = 𝑧))
113, 10nfald2 2319 . . . 4 (𝜑 → Ⅎ𝑥𝑦(𝜓𝑦 = 𝑧))
122, 11nfabd 2771 . . 3 (𝜑𝑥{𝑧 ∣ ∀𝑦(𝜓𝑦 = 𝑧)})
1312nfunid 4379 . 2 (𝜑𝑥 {𝑧 ∣ ∀𝑦(𝜓𝑦 = 𝑧)})
141, 13nfcxfrd 2750 1 (𝜑𝑥(℩𝑦𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  wal 1473  wnf 1699  {cab 2596  wnfc 2738   cuni 4372  cio 5766
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-sn 4126  df-uni 4373  df-iota 5768
This theorem is referenced by:  nfiota  5772  nfriotad  6519
  Copyright terms: Public domain W3C validator