Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfeqd | Structured version Visualization version GIF version |
Description: Hypothesis builder for equality. (Contributed by Mario Carneiro, 7-Oct-2016.) |
Ref | Expression |
---|---|
nfeqd.1 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
nfeqd.2 | ⊢ (𝜑 → Ⅎ𝑥𝐵) |
Ref | Expression |
---|---|
nfeqd | ⊢ (𝜑 → Ⅎ𝑥 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfcleq 2604 | . 2 ⊢ (𝐴 = 𝐵 ↔ ∀𝑦(𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵)) | |
2 | nfv 1830 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
3 | nfeqd.1 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
4 | 3 | nfcrd 2757 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥 𝑦 ∈ 𝐴) |
5 | nfeqd.2 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝐵) | |
6 | 5 | nfcrd 2757 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥 𝑦 ∈ 𝐵) |
7 | 4, 6 | nfbid 1820 | . . 3 ⊢ (𝜑 → Ⅎ𝑥(𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵)) |
8 | 2, 7 | nfald 2151 | . 2 ⊢ (𝜑 → Ⅎ𝑥∀𝑦(𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵)) |
9 | 1, 8 | nfxfrd 1772 | 1 ⊢ (𝜑 → Ⅎ𝑥 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∀wal 1473 = wceq 1475 Ⅎwnf 1699 ∈ wcel 1977 Ⅎwnfc 2738 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-ext 2590 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-ex 1696 df-nf 1701 df-cleq 2603 df-nfc 2740 |
This theorem is referenced by: nfeld 2759 nfeq 2762 nfned 2883 vtoclgft 3227 vtoclgftOLD 3228 sbcralt 3477 csbiebt 3519 dfnfc2 4390 dfnfc2OLD 4391 eusvnfb 4788 eusv2i 4789 dfid3 4954 nfiotad 5771 iota2df 5792 riota5f 6535 oprabid 6576 axrepndlem1 9293 axrepndlem2 9294 axunnd 9297 axpowndlem4 9301 axregndlem2 9304 axinfndlem1 9306 axinfnd 9307 axacndlem4 9311 axacndlem5 9312 axacnd 9313 riotasv2d 33261 riotaeqimp 40338 |
Copyright terms: Public domain | W3C validator |