MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfeqd Structured version   Visualization version   GIF version

Theorem nfeqd 2758
Description: Hypothesis builder for equality. (Contributed by Mario Carneiro, 7-Oct-2016.)
Hypotheses
Ref Expression
nfeqd.1 (𝜑𝑥𝐴)
nfeqd.2 (𝜑𝑥𝐵)
Assertion
Ref Expression
nfeqd (𝜑 → Ⅎ𝑥 𝐴 = 𝐵)

Proof of Theorem nfeqd
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfcleq 2604 . 2 (𝐴 = 𝐵 ↔ ∀𝑦(𝑦𝐴𝑦𝐵))
2 nfv 1830 . . 3 𝑦𝜑
3 nfeqd.1 . . . . 5 (𝜑𝑥𝐴)
43nfcrd 2757 . . . 4 (𝜑 → Ⅎ𝑥 𝑦𝐴)
5 nfeqd.2 . . . . 5 (𝜑𝑥𝐵)
65nfcrd 2757 . . . 4 (𝜑 → Ⅎ𝑥 𝑦𝐵)
74, 6nfbid 1820 . . 3 (𝜑 → Ⅎ𝑥(𝑦𝐴𝑦𝐵))
82, 7nfald 2151 . 2 (𝜑 → Ⅎ𝑥𝑦(𝑦𝐴𝑦𝐵))
91, 8nfxfrd 1772 1 (𝜑 → Ⅎ𝑥 𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wal 1473   = wceq 1475  wnf 1699  wcel 1977  wnfc 2738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-ex 1696  df-nf 1701  df-cleq 2603  df-nfc 2740
This theorem is referenced by:  nfeld  2759  nfeq  2762  nfned  2883  vtoclgft  3227  vtoclgftOLD  3228  sbcralt  3477  csbiebt  3519  dfnfc2  4390  dfnfc2OLD  4391  eusvnfb  4788  eusv2i  4789  dfid3  4954  nfiotad  5771  iota2df  5792  riota5f  6535  oprabid  6576  axrepndlem1  9293  axrepndlem2  9294  axunnd  9297  axpowndlem4  9301  axregndlem2  9304  axinfndlem1  9306  axinfnd  9307  axacndlem4  9311  axacndlem5  9312  axacnd  9313  riotasv2d  33261  riotaeqimp  40338
  Copyright terms: Public domain W3C validator