Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfdvOLD | Structured version Visualization version GIF version |
Description: Obsolete proof of nf5dv 2012 as of 6-Oct-2021. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nfdvOLD.1 | ⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) |
Ref | Expression |
---|---|
nfdvOLD | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfdvOLD.1 | . . 3 ⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) | |
2 | 1 | alrimiv 1842 | . 2 ⊢ (𝜑 → ∀𝑥(𝜓 → ∀𝑥𝜓)) |
3 | df-nfOLD 1712 | . 2 ⊢ (Ⅎ𝑥𝜓 ↔ ∀𝑥(𝜓 → ∀𝑥𝜓)) | |
4 | 2, 3 | sylibr 223 | 1 ⊢ (𝜑 → Ⅎ𝑥𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1473 ℲwnfOLD 1700 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 |
This theorem depends on definitions: df-bi 196 df-nfOLD 1712 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |