Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfcdeq Structured version   Visualization version   GIF version

Theorem nfcdeq 3399
 Description: If we have a conditional equality proof, where 𝜑 is 𝜑(𝑥) and 𝜓 is 𝜑(𝑦), and 𝜑(𝑥) in fact does not have 𝑥 free in it according to Ⅎ, then 𝜑(𝑥) ↔ 𝜑(𝑦) unconditionally. This proves that Ⅎ𝑥𝜑 is actually a not-free predicate. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypotheses
Ref Expression
nfcdeq.1 𝑥𝜑
nfcdeq.2 CondEq(𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
nfcdeq (𝜑𝜓)
Distinct variable groups:   𝜓,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem nfcdeq
StepHypRef Expression
1 nfcdeq.1 . . 3 𝑥𝜑
21sbf 2368 . 2 ([𝑦 / 𝑥]𝜑𝜑)
3 nfv 1830 . . 3 𝑥𝜓
4 nfcdeq.2 . . . 4 CondEq(𝑥 = 𝑦 → (𝜑𝜓))
54cdeqri 3388 . . 3 (𝑥 = 𝑦 → (𝜑𝜓))
63, 5sbie 2396 . 2 ([𝑦 / 𝑥]𝜑𝜓)
72, 6bitr3i 265 1 (𝜑𝜓)
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 195  Ⅎwnf 1699  [wsb 1867  CondEqwcdeq 3385 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-12 2034  ax-13 2234 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-cdeq 3386 This theorem is referenced by:  nfccdeq  3400
 Copyright terms: Public domain W3C validator