Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nexple Structured version   Visualization version   GIF version

Theorem nexple 29399
Description: A lower bound for an exponentiation. (Contributed by Thierry Arnoux, 19-Aug-2017.)
Assertion
Ref Expression
nexple ((𝐴 ∈ ℕ0𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → 𝐴 ≤ (𝐵𝐴))

Proof of Theorem nexple
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 476 . . 3 (((𝐴 ∈ ℕ0𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝐴 ∈ ℕ) → 𝐴 ∈ ℕ)
2 simpl2 1058 . . 3 (((𝐴 ∈ ℕ0𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝐴 ∈ ℕ) → 𝐵 ∈ ℝ)
3 simpl3 1059 . . 3 (((𝐴 ∈ ℕ0𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝐴 ∈ ℕ) → 2 ≤ 𝐵)
4 id 22 . . . . . . 7 (𝑘 = 1 → 𝑘 = 1)
5 oveq2 6557 . . . . . . 7 (𝑘 = 1 → (𝐵𝑘) = (𝐵↑1))
64, 5breq12d 4596 . . . . . 6 (𝑘 = 1 → (𝑘 ≤ (𝐵𝑘) ↔ 1 ≤ (𝐵↑1)))
76imbi2d 329 . . . . 5 (𝑘 = 1 → (((𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → 𝑘 ≤ (𝐵𝑘)) ↔ ((𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → 1 ≤ (𝐵↑1))))
8 id 22 . . . . . . 7 (𝑘 = 𝑛𝑘 = 𝑛)
9 oveq2 6557 . . . . . . 7 (𝑘 = 𝑛 → (𝐵𝑘) = (𝐵𝑛))
108, 9breq12d 4596 . . . . . 6 (𝑘 = 𝑛 → (𝑘 ≤ (𝐵𝑘) ↔ 𝑛 ≤ (𝐵𝑛)))
1110imbi2d 329 . . . . 5 (𝑘 = 𝑛 → (((𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → 𝑘 ≤ (𝐵𝑘)) ↔ ((𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → 𝑛 ≤ (𝐵𝑛))))
12 id 22 . . . . . . 7 (𝑘 = (𝑛 + 1) → 𝑘 = (𝑛 + 1))
13 oveq2 6557 . . . . . . 7 (𝑘 = (𝑛 + 1) → (𝐵𝑘) = (𝐵↑(𝑛 + 1)))
1412, 13breq12d 4596 . . . . . 6 (𝑘 = (𝑛 + 1) → (𝑘 ≤ (𝐵𝑘) ↔ (𝑛 + 1) ≤ (𝐵↑(𝑛 + 1))))
1514imbi2d 329 . . . . 5 (𝑘 = (𝑛 + 1) → (((𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → 𝑘 ≤ (𝐵𝑘)) ↔ ((𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → (𝑛 + 1) ≤ (𝐵↑(𝑛 + 1)))))
16 id 22 . . . . . . 7 (𝑘 = 𝐴𝑘 = 𝐴)
17 oveq2 6557 . . . . . . 7 (𝑘 = 𝐴 → (𝐵𝑘) = (𝐵𝐴))
1816, 17breq12d 4596 . . . . . 6 (𝑘 = 𝐴 → (𝑘 ≤ (𝐵𝑘) ↔ 𝐴 ≤ (𝐵𝐴)))
1918imbi2d 329 . . . . 5 (𝑘 = 𝐴 → (((𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → 𝑘 ≤ (𝐵𝑘)) ↔ ((𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → 𝐴 ≤ (𝐵𝐴))))
20 simpl 472 . . . . . 6 ((𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → 𝐵 ∈ ℝ)
21 1nn0 11185 . . . . . . 7 1 ∈ ℕ0
2221a1i 11 . . . . . 6 ((𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → 1 ∈ ℕ0)
23 1red 9934 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → 1 ∈ ℝ)
24 2re 10967 . . . . . . . 8 2 ∈ ℝ
2524a1i 11 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → 2 ∈ ℝ)
26 1le2 11118 . . . . . . . 8 1 ≤ 2
2726a1i 11 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → 1 ≤ 2)
28 simpr 476 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → 2 ≤ 𝐵)
2923, 25, 20, 27, 28letrd 10073 . . . . . 6 ((𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → 1 ≤ 𝐵)
3020, 22, 29expge1d 12889 . . . . 5 ((𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → 1 ≤ (𝐵↑1))
31 simp1 1054 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝑛 ≤ (𝐵𝑛)) → 𝑛 ∈ ℕ)
3231nnnn0d 11228 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝑛 ≤ (𝐵𝑛)) → 𝑛 ∈ ℕ0)
3332nn0red 11229 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝑛 ≤ (𝐵𝑛)) → 𝑛 ∈ ℝ)
34 1red 9934 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝑛 ≤ (𝐵𝑛)) → 1 ∈ ℝ)
3533, 34readdcld 9948 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝑛 ≤ (𝐵𝑛)) → (𝑛 + 1) ∈ ℝ)
36203ad2ant2 1076 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝑛 ≤ (𝐵𝑛)) → 𝐵 ∈ ℝ)
3733, 36remulcld 9949 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝑛 ≤ (𝐵𝑛)) → (𝑛 · 𝐵) ∈ ℝ)
3836, 32reexpcld 12887 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝑛 ≤ (𝐵𝑛)) → (𝐵𝑛) ∈ ℝ)
3938, 36remulcld 9949 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝑛 ≤ (𝐵𝑛)) → ((𝐵𝑛) · 𝐵) ∈ ℝ)
4024a1i 11 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝑛 ≤ (𝐵𝑛)) → 2 ∈ ℝ)
4133, 40remulcld 9949 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝑛 ≤ (𝐵𝑛)) → (𝑛 · 2) ∈ ℝ)
4231nnge1d 10940 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝑛 ≤ (𝐵𝑛)) → 1 ≤ 𝑛)
4334, 33, 33, 42leadd2dd 10521 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝑛 ≤ (𝐵𝑛)) → (𝑛 + 1) ≤ (𝑛 + 𝑛))
4433recnd 9947 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝑛 ≤ (𝐵𝑛)) → 𝑛 ∈ ℂ)
4544times2d 11153 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝑛 ≤ (𝐵𝑛)) → (𝑛 · 2) = (𝑛 + 𝑛))
4643, 45breqtrrd 4611 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝑛 ≤ (𝐵𝑛)) → (𝑛 + 1) ≤ (𝑛 · 2))
4732nn0ge0d 11231 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝑛 ≤ (𝐵𝑛)) → 0 ≤ 𝑛)
48 simp2r 1081 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝑛 ≤ (𝐵𝑛)) → 2 ≤ 𝐵)
4940, 36, 33, 47, 48lemul2ad 10843 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝑛 ≤ (𝐵𝑛)) → (𝑛 · 2) ≤ (𝑛 · 𝐵))
5035, 41, 37, 46, 49letrd 10073 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝑛 ≤ (𝐵𝑛)) → (𝑛 + 1) ≤ (𝑛 · 𝐵))
51 0red 9920 . . . . . . . . . . . 12 ((𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → 0 ∈ ℝ)
52 0le2 10988 . . . . . . . . . . . . 13 0 ≤ 2
5352a1i 11 . . . . . . . . . . . 12 ((𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → 0 ≤ 2)
5451, 25, 20, 53, 28letrd 10073 . . . . . . . . . . 11 ((𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → 0 ≤ 𝐵)
55543ad2ant2 1076 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝑛 ≤ (𝐵𝑛)) → 0 ≤ 𝐵)
56 simp3 1056 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝑛 ≤ (𝐵𝑛)) → 𝑛 ≤ (𝐵𝑛))
5733, 38, 36, 55, 56lemul1ad 10842 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝑛 ≤ (𝐵𝑛)) → (𝑛 · 𝐵) ≤ ((𝐵𝑛) · 𝐵))
5835, 37, 39, 50, 57letrd 10073 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝑛 ≤ (𝐵𝑛)) → (𝑛 + 1) ≤ ((𝐵𝑛) · 𝐵))
5936recnd 9947 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝑛 ≤ (𝐵𝑛)) → 𝐵 ∈ ℂ)
6059, 32expp1d 12871 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝑛 ≤ (𝐵𝑛)) → (𝐵↑(𝑛 + 1)) = ((𝐵𝑛) · 𝐵))
6158, 60breqtrrd 4611 . . . . . . 7 ((𝑛 ∈ ℕ ∧ (𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝑛 ≤ (𝐵𝑛)) → (𝑛 + 1) ≤ (𝐵↑(𝑛 + 1)))
62613exp 1256 . . . . . 6 (𝑛 ∈ ℕ → ((𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → (𝑛 ≤ (𝐵𝑛) → (𝑛 + 1) ≤ (𝐵↑(𝑛 + 1)))))
6362a2d 29 . . . . 5 (𝑛 ∈ ℕ → (((𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → 𝑛 ≤ (𝐵𝑛)) → ((𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → (𝑛 + 1) ≤ (𝐵↑(𝑛 + 1)))))
647, 11, 15, 19, 30, 63nnind 10915 . . . 4 (𝐴 ∈ ℕ → ((𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → 𝐴 ≤ (𝐵𝐴)))
65643impib 1254 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → 𝐴 ≤ (𝐵𝐴))
661, 2, 3, 65syl3anc 1318 . 2 (((𝐴 ∈ ℕ0𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝐴 ∈ ℕ) → 𝐴 ≤ (𝐵𝐴))
67 0le1 10430 . . . 4 0 ≤ 1
6867a1i 11 . . 3 (((𝐴 ∈ ℕ0𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝐴 = 0) → 0 ≤ 1)
69 simpr 476 . . 3 (((𝐴 ∈ ℕ0𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝐴 = 0) → 𝐴 = 0)
7069oveq2d 6565 . . . 4 (((𝐴 ∈ ℕ0𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝐴 = 0) → (𝐵𝐴) = (𝐵↑0))
71 simpl2 1058 . . . . . 6 (((𝐴 ∈ ℕ0𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝐴 = 0) → 𝐵 ∈ ℝ)
7271recnd 9947 . . . . 5 (((𝐴 ∈ ℕ0𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝐴 = 0) → 𝐵 ∈ ℂ)
7372exp0d 12864 . . . 4 (((𝐴 ∈ ℕ0𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝐴 = 0) → (𝐵↑0) = 1)
7470, 73eqtrd 2644 . . 3 (((𝐴 ∈ ℕ0𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝐴 = 0) → (𝐵𝐴) = 1)
7568, 69, 743brtr4d 4615 . 2 (((𝐴 ∈ ℕ0𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) ∧ 𝐴 = 0) → 𝐴 ≤ (𝐵𝐴))
76 elnn0 11171 . . . 4 (𝐴 ∈ ℕ0 ↔ (𝐴 ∈ ℕ ∨ 𝐴 = 0))
7776biimpi 205 . . 3 (𝐴 ∈ ℕ0 → (𝐴 ∈ ℕ ∨ 𝐴 = 0))
78773ad2ant1 1075 . 2 ((𝐴 ∈ ℕ0𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → (𝐴 ∈ ℕ ∨ 𝐴 = 0))
7966, 75, 78mpjaodan 823 1 ((𝐴 ∈ ℕ0𝐵 ∈ ℝ ∧ 2 ≤ 𝐵) → 𝐴 ≤ (𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 382  wa 383  w3a 1031   = wceq 1475  wcel 1977   class class class wbr 4583  (class class class)co 6549  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820  cle 9954  cn 10897  2c2 10947  0cn0 11169  cexp 12722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-seq 12664  df-exp 12723
This theorem is referenced by:  oddpwdc  29743
  Copyright terms: Public domain W3C validator