Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nexdh | Structured version Visualization version GIF version |
Description: Deduction for generalization rule for negated wff. (Contributed by NM, 2-Jan-2002.) |
Ref | Expression |
---|---|
nexdh.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
nexdh.2 | ⊢ (𝜑 → ¬ 𝜓) |
Ref | Expression |
---|---|
nexdh | ⊢ (𝜑 → ¬ ∃𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nexdh.1 | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) | |
2 | nexdh.2 | . . 3 ⊢ (𝜑 → ¬ 𝜓) | |
3 | 1, 2 | alrimih 1741 | . 2 ⊢ (𝜑 → ∀𝑥 ¬ 𝜓) |
4 | alnex 1697 | . 2 ⊢ (∀𝑥 ¬ 𝜓 ↔ ¬ ∃𝑥𝜓) | |
5 | 3, 4 | sylib 207 | 1 ⊢ (𝜑 → ¬ ∃𝑥𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1473 ∃wex 1695 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 |
This theorem depends on definitions: df-bi 196 df-ex 1696 |
This theorem is referenced by: nexdv 1851 nexd 2076 nexdOLD 2186 |
Copyright terms: Public domain | W3C validator |