Mathbox for Richard Penner < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  neicvgf1o Structured version   Visualization version   GIF version

Theorem neicvgf1o 37432
 Description: If neighborhood and convergent functions are related by operator 𝐻, it is a one-to-one onto relation. (Contributed by RP, 11-Jun-2021.)
Hypotheses
Ref Expression
neicvg.o 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗𝑚 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
neicvg.p 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛𝑚 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛𝑜))))))
neicvg.d 𝐷 = (𝑃𝐵)
neicvg.f 𝐹 = (𝒫 𝐵𝑂𝐵)
neicvg.g 𝐺 = (𝐵𝑂𝒫 𝐵)
neicvg.h 𝐻 = (𝐹 ∘ (𝐷𝐺))
neicvg.r (𝜑𝑁𝐻𝑀)
Assertion
Ref Expression
neicvgf1o (𝜑𝐻:(𝒫 𝒫 𝐵𝑚 𝐵)–1-1-onto→(𝒫 𝒫 𝐵𝑚 𝐵))
Distinct variable groups:   𝐵,𝑖,𝑗,𝑘,𝑙,𝑚   𝐵,𝑛,𝑜,𝑝   𝜑,𝑖,𝑗,𝑘,𝑙   𝜑,𝑛,𝑜,𝑝
Allowed substitution hints:   𝜑(𝑚)   𝐷(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝑃(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝐹(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝐺(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝐻(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝑀(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝑁(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝑂(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)

Proof of Theorem neicvgf1o
StepHypRef Expression
1 neicvg.o . . . 4 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗𝑚 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
2 neicvg.d . . . . . 6 𝐷 = (𝑃𝐵)
3 neicvg.h . . . . . 6 𝐻 = (𝐹 ∘ (𝐷𝐺))
4 neicvg.r . . . . . 6 (𝜑𝑁𝐻𝑀)
52, 3, 4neicvgbex 37430 . . . . 5 (𝜑𝐵 ∈ V)
6 pwexg 4776 . . . . 5 (𝐵 ∈ V → 𝒫 𝐵 ∈ V)
75, 6syl 17 . . . 4 (𝜑 → 𝒫 𝐵 ∈ V)
8 neicvg.f . . . 4 𝐹 = (𝒫 𝐵𝑂𝐵)
91, 7, 5, 8fsovf1od 37330 . . 3 (𝜑𝐹:(𝒫 𝐵𝑚 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵𝑚 𝐵))
10 neicvg.p . . . . 5 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛𝑚 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛𝑜))))))
1110, 2, 5dssmapf1od 37335 . . . 4 (𝜑𝐷:(𝒫 𝐵𝑚 𝒫 𝐵)–1-1-onto→(𝒫 𝐵𝑚 𝒫 𝐵))
12 neicvg.g . . . . 5 𝐺 = (𝐵𝑂𝒫 𝐵)
131, 5, 7, 12fsovf1od 37330 . . . 4 (𝜑𝐺:(𝒫 𝒫 𝐵𝑚 𝐵)–1-1-onto→(𝒫 𝐵𝑚 𝒫 𝐵))
14 f1oco 6072 . . . 4 ((𝐷:(𝒫 𝐵𝑚 𝒫 𝐵)–1-1-onto→(𝒫 𝐵𝑚 𝒫 𝐵) ∧ 𝐺:(𝒫 𝒫 𝐵𝑚 𝐵)–1-1-onto→(𝒫 𝐵𝑚 𝒫 𝐵)) → (𝐷𝐺):(𝒫 𝒫 𝐵𝑚 𝐵)–1-1-onto→(𝒫 𝐵𝑚 𝒫 𝐵))
1511, 13, 14syl2anc 691 . . 3 (𝜑 → (𝐷𝐺):(𝒫 𝒫 𝐵𝑚 𝐵)–1-1-onto→(𝒫 𝐵𝑚 𝒫 𝐵))
16 f1oco 6072 . . 3 ((𝐹:(𝒫 𝐵𝑚 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵𝑚 𝐵) ∧ (𝐷𝐺):(𝒫 𝒫 𝐵𝑚 𝐵)–1-1-onto→(𝒫 𝐵𝑚 𝒫 𝐵)) → (𝐹 ∘ (𝐷𝐺)):(𝒫 𝒫 𝐵𝑚 𝐵)–1-1-onto→(𝒫 𝒫 𝐵𝑚 𝐵))
179, 15, 16syl2anc 691 . 2 (𝜑 → (𝐹 ∘ (𝐷𝐺)):(𝒫 𝒫 𝐵𝑚 𝐵)–1-1-onto→(𝒫 𝒫 𝐵𝑚 𝐵))
18 f1oeq1 6040 . . 3 (𝐻 = (𝐹 ∘ (𝐷𝐺)) → (𝐻:(𝒫 𝒫 𝐵𝑚 𝐵)–1-1-onto→(𝒫 𝒫 𝐵𝑚 𝐵) ↔ (𝐹 ∘ (𝐷𝐺)):(𝒫 𝒫 𝐵𝑚 𝐵)–1-1-onto→(𝒫 𝒫 𝐵𝑚 𝐵)))
193, 18ax-mp 5 . 2 (𝐻:(𝒫 𝒫 𝐵𝑚 𝐵)–1-1-onto→(𝒫 𝒫 𝐵𝑚 𝐵) ↔ (𝐹 ∘ (𝐷𝐺)):(𝒫 𝒫 𝐵𝑚 𝐵)–1-1-onto→(𝒫 𝒫 𝐵𝑚 𝐵))
2017, 19sylibr 223 1 (𝜑𝐻:(𝒫 𝒫 𝐵𝑚 𝐵)–1-1-onto→(𝒫 𝒫 𝐵𝑚 𝐵))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   = wceq 1475   ∈ wcel 1977  {crab 2900  Vcvv 3173   ∖ cdif 3537  𝒫 cpw 4108   class class class wbr 4583   ↦ cmpt 4643   ∘ ccom 5042  –1-1-onto→wf1o 5803  ‘cfv 5804  (class class class)co 6549   ↦ cmpt2 6551   ↑𝑚 cmap 7744 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-map 7746 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator