Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > neicvgel2 | Structured version Visualization version GIF version |
Description: The complement of a subset being an element of a neighborhood at a point is equivalent to that subset not being a element of the convergent at that point. (Contributed by RP, 12-Jun-2021.) |
Ref | Expression |
---|---|
neicvg.o | ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑𝑚 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) |
neicvg.p | ⊢ 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛 ↑𝑚 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛 ∖ 𝑜)))))) |
neicvg.d | ⊢ 𝐷 = (𝑃‘𝐵) |
neicvg.f | ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) |
neicvg.g | ⊢ 𝐺 = (𝐵𝑂𝒫 𝐵) |
neicvg.h | ⊢ 𝐻 = (𝐹 ∘ (𝐷 ∘ 𝐺)) |
neicvg.r | ⊢ (𝜑 → 𝑁𝐻𝑀) |
neicvgel.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
neicvgel.s | ⊢ (𝜑 → 𝑆 ∈ 𝒫 𝐵) |
Ref | Expression |
---|---|
neicvgel2 | ⊢ (𝜑 → ((𝐵 ∖ 𝑆) ∈ (𝑁‘𝑋) ↔ ¬ 𝑆 ∈ (𝑀‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neicvg.o | . . 3 ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑𝑚 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) | |
2 | neicvg.p | . . 3 ⊢ 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛 ↑𝑚 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛 ∖ 𝑜)))))) | |
3 | neicvg.d | . . 3 ⊢ 𝐷 = (𝑃‘𝐵) | |
4 | neicvg.f | . . 3 ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) | |
5 | neicvg.g | . . 3 ⊢ 𝐺 = (𝐵𝑂𝒫 𝐵) | |
6 | neicvg.h | . . 3 ⊢ 𝐻 = (𝐹 ∘ (𝐷 ∘ 𝐺)) | |
7 | neicvg.r | . . 3 ⊢ (𝜑 → 𝑁𝐻𝑀) | |
8 | neicvgel.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
9 | 3, 6, 7 | neicvgrcomplex 37431 | . . 3 ⊢ (𝜑 → (𝐵 ∖ 𝑆) ∈ 𝒫 𝐵) |
10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | neicvgel1 37437 | . 2 ⊢ (𝜑 → ((𝐵 ∖ 𝑆) ∈ (𝑁‘𝑋) ↔ ¬ (𝐵 ∖ (𝐵 ∖ 𝑆)) ∈ (𝑀‘𝑋))) |
11 | neicvgel.s | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ 𝒫 𝐵) | |
12 | 11 | elpwid 4118 | . . . . 5 ⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
13 | dfss4 3820 | . . . . 5 ⊢ (𝑆 ⊆ 𝐵 ↔ (𝐵 ∖ (𝐵 ∖ 𝑆)) = 𝑆) | |
14 | 12, 13 | sylib 207 | . . . 4 ⊢ (𝜑 → (𝐵 ∖ (𝐵 ∖ 𝑆)) = 𝑆) |
15 | 14 | eleq1d 2672 | . . 3 ⊢ (𝜑 → ((𝐵 ∖ (𝐵 ∖ 𝑆)) ∈ (𝑀‘𝑋) ↔ 𝑆 ∈ (𝑀‘𝑋))) |
16 | 15 | notbid 307 | . 2 ⊢ (𝜑 → (¬ (𝐵 ∖ (𝐵 ∖ 𝑆)) ∈ (𝑀‘𝑋) ↔ ¬ 𝑆 ∈ (𝑀‘𝑋))) |
17 | 10, 16 | bitrd 267 | 1 ⊢ (𝜑 → ((𝐵 ∖ 𝑆) ∈ (𝑁‘𝑋) ↔ ¬ 𝑆 ∈ (𝑀‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 195 = wceq 1475 ∈ wcel 1977 {crab 2900 Vcvv 3173 ∖ cdif 3537 ⊆ wss 3540 𝒫 cpw 4108 class class class wbr 4583 ↦ cmpt 4643 ∘ ccom 5042 ‘cfv 5804 (class class class)co 6549 ↦ cmpt2 6551 ↑𝑚 cmap 7744 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-1st 7059 df-2nd 7060 df-map 7746 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |