Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  neicvgel1 Structured version   Visualization version   GIF version

Theorem neicvgel1 37437
Description: A subset being an element of a neighborhood of a point is equivalent to the complement of that subset not being a element of the convergent of that point. (Contributed by RP, 12-Jun-2021.)
Hypotheses
Ref Expression
neicvg.o 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗𝑚 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
neicvg.p 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛𝑚 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛𝑜))))))
neicvg.d 𝐷 = (𝑃𝐵)
neicvg.f 𝐹 = (𝒫 𝐵𝑂𝐵)
neicvg.g 𝐺 = (𝐵𝑂𝒫 𝐵)
neicvg.h 𝐻 = (𝐹 ∘ (𝐷𝐺))
neicvg.r (𝜑𝑁𝐻𝑀)
neicvgel.x (𝜑𝑋𝐵)
neicvgel.s (𝜑𝑆 ∈ 𝒫 𝐵)
Assertion
Ref Expression
neicvgel1 (𝜑 → (𝑆 ∈ (𝑁𝑋) ↔ ¬ (𝐵𝑆) ∈ (𝑀𝑋)))
Distinct variable groups:   𝐵,𝑖,𝑗,𝑘,𝑙,𝑚   𝐵,𝑛,𝑜,𝑝   𝐷,𝑖,𝑗,𝑘,𝑙,𝑚   𝐷,𝑛,𝑜,𝑝   𝑖,𝐹,𝑗,𝑘,𝑙   𝑛,𝐹,𝑜,𝑝   𝑖,𝐺,𝑗,𝑘,𝑙,𝑚   𝑛,𝐺,𝑜,𝑝   𝑖,𝑀,𝑗,𝑘,𝑙   𝑛,𝑀,𝑜,𝑝   𝑖,𝑁,𝑗,𝑘,𝑙,𝑚   𝑛,𝑁,𝑜,𝑝   𝑆,𝑚   𝑆,𝑜   𝑋,𝑙,𝑚   𝜑,𝑖,𝑗,𝑘,𝑙   𝜑,𝑛,𝑜,𝑝
Allowed substitution hints:   𝜑(𝑚)   𝑃(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝑆(𝑖,𝑗,𝑘,𝑛,𝑝,𝑙)   𝐹(𝑚)   𝐻(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝑀(𝑚)   𝑂(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝑋(𝑖,𝑗,𝑘,𝑛,𝑜,𝑝)

Proof of Theorem neicvgel1
StepHypRef Expression
1 neicvg.d . . . 4 𝐷 = (𝑃𝐵)
2 neicvg.h . . . 4 𝐻 = (𝐹 ∘ (𝐷𝐺))
3 neicvg.r . . . 4 (𝜑𝑁𝐻𝑀)
41, 2, 3neicvgbex 37430 . . 3 (𝜑𝐵 ∈ V)
5 neicvg.o . . . . . 6 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗𝑚 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
6 simpr 476 . . . . . . 7 ((𝜑𝐵 ∈ V) → 𝐵 ∈ V)
7 pwexg 4776 . . . . . . 7 (𝐵 ∈ V → 𝒫 𝐵 ∈ V)
86, 7syl 17 . . . . . 6 ((𝜑𝐵 ∈ V) → 𝒫 𝐵 ∈ V)
9 neicvg.f . . . . . 6 𝐹 = (𝒫 𝐵𝑂𝐵)
105, 8, 6, 9fsovf1od 37330 . . . . 5 ((𝜑𝐵 ∈ V) → 𝐹:(𝒫 𝐵𝑚 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵𝑚 𝐵))
11 f1ofn 6051 . . . . 5 (𝐹:(𝒫 𝐵𝑚 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵𝑚 𝐵) → 𝐹 Fn (𝒫 𝐵𝑚 𝒫 𝐵))
1210, 11syl 17 . . . 4 ((𝜑𝐵 ∈ V) → 𝐹 Fn (𝒫 𝐵𝑚 𝒫 𝐵))
13 neicvg.p . . . . . 6 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛𝑚 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛𝑜))))))
1413, 1, 6dssmapf1od 37335 . . . . 5 ((𝜑𝐵 ∈ V) → 𝐷:(𝒫 𝐵𝑚 𝒫 𝐵)–1-1-onto→(𝒫 𝐵𝑚 𝒫 𝐵))
15 f1of 6050 . . . . 5 (𝐷:(𝒫 𝐵𝑚 𝒫 𝐵)–1-1-onto→(𝒫 𝐵𝑚 𝒫 𝐵) → 𝐷:(𝒫 𝐵𝑚 𝒫 𝐵)⟶(𝒫 𝐵𝑚 𝒫 𝐵))
1614, 15syl 17 . . . 4 ((𝜑𝐵 ∈ V) → 𝐷:(𝒫 𝐵𝑚 𝒫 𝐵)⟶(𝒫 𝐵𝑚 𝒫 𝐵))
17 neicvg.g . . . . 5 𝐺 = (𝐵𝑂𝒫 𝐵)
185, 6, 8, 17fsovfd 37326 . . . 4 ((𝜑𝐵 ∈ V) → 𝐺:(𝒫 𝒫 𝐵𝑚 𝐵)⟶(𝒫 𝐵𝑚 𝒫 𝐵))
192breqi 4589 . . . . . 6 (𝑁𝐻𝑀𝑁(𝐹 ∘ (𝐷𝐺))𝑀)
203, 19sylib 207 . . . . 5 (𝜑𝑁(𝐹 ∘ (𝐷𝐺))𝑀)
2120adantr 480 . . . 4 ((𝜑𝐵 ∈ V) → 𝑁(𝐹 ∘ (𝐷𝐺))𝑀)
2212, 16, 18, 21brcofffn 37349 . . 3 ((𝜑𝐵 ∈ V) → (𝑁𝐺(𝐺𝑁) ∧ (𝐺𝑁)𝐷(𝐷‘(𝐺𝑁)) ∧ (𝐷‘(𝐺𝑁))𝐹𝑀))
234, 22mpdan 699 . 2 (𝜑 → (𝑁𝐺(𝐺𝑁) ∧ (𝐺𝑁)𝐷(𝐷‘(𝐺𝑁)) ∧ (𝐷‘(𝐺𝑁))𝐹𝑀))
24 simpr2 1061 . . . 4 ((𝜑 ∧ (𝑁𝐺(𝐺𝑁) ∧ (𝐺𝑁)𝐷(𝐷‘(𝐺𝑁)) ∧ (𝐷‘(𝐺𝑁))𝐹𝑀)) → (𝐺𝑁)𝐷(𝐷‘(𝐺𝑁)))
25 neicvgel.x . . . . 5 (𝜑𝑋𝐵)
2625adantr 480 . . . 4 ((𝜑 ∧ (𝑁𝐺(𝐺𝑁) ∧ (𝐺𝑁)𝐷(𝐷‘(𝐺𝑁)) ∧ (𝐷‘(𝐺𝑁))𝐹𝑀)) → 𝑋𝐵)
27 neicvgel.s . . . . 5 (𝜑𝑆 ∈ 𝒫 𝐵)
2827adantr 480 . . . 4 ((𝜑 ∧ (𝑁𝐺(𝐺𝑁) ∧ (𝐺𝑁)𝐷(𝐷‘(𝐺𝑁)) ∧ (𝐷‘(𝐺𝑁))𝐹𝑀)) → 𝑆 ∈ 𝒫 𝐵)
2913, 1, 24, 26, 28ntrclselnel1 37375 . . 3 ((𝜑 ∧ (𝑁𝐺(𝐺𝑁) ∧ (𝐺𝑁)𝐷(𝐷‘(𝐺𝑁)) ∧ (𝐷‘(𝐺𝑁))𝐹𝑀)) → (𝑋 ∈ ((𝐺𝑁)‘𝑆) ↔ ¬ 𝑋 ∈ ((𝐷‘(𝐺𝑁))‘(𝐵𝑆))))
30 eqid 2610 . . . 4 (𝒫 𝐵𝑂𝐵) = (𝒫 𝐵𝑂𝐵)
31 simpr1 1060 . . . . 5 ((𝜑 ∧ (𝑁𝐺(𝐺𝑁) ∧ (𝐺𝑁)𝐷(𝐷‘(𝐺𝑁)) ∧ (𝐷‘(𝐺𝑁))𝐹𝑀)) → 𝑁𝐺(𝐺𝑁))
3217breqi 4589 . . . . . . 7 (𝑁𝐺(𝐺𝑁) ↔ 𝑁(𝐵𝑂𝒫 𝐵)(𝐺𝑁))
3332a1i 11 . . . . . 6 ((𝜑 ∧ (𝑁𝐺(𝐺𝑁) ∧ (𝐺𝑁)𝐷(𝐷‘(𝐺𝑁)) ∧ (𝐷‘(𝐺𝑁))𝐹𝑀)) → (𝑁𝐺(𝐺𝑁) ↔ 𝑁(𝐵𝑂𝒫 𝐵)(𝐺𝑁)))
344adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑁𝐺(𝐺𝑁) ∧ (𝐺𝑁)𝐷(𝐷‘(𝐺𝑁)) ∧ (𝐷‘(𝐺𝑁))𝐹𝑀)) → 𝐵 ∈ V)
35 id 22 . . . . . . . . 9 (𝐵 ∈ V → 𝐵 ∈ V)
36 eqid 2610 . . . . . . . . 9 (𝐵𝑂𝒫 𝐵) = (𝐵𝑂𝒫 𝐵)
375, 35, 7, 36fsovf1od 37330 . . . . . . . 8 (𝐵 ∈ V → (𝐵𝑂𝒫 𝐵):(𝒫 𝒫 𝐵𝑚 𝐵)–1-1-onto→(𝒫 𝐵𝑚 𝒫 𝐵))
3834, 37syl 17 . . . . . . 7 ((𝜑 ∧ (𝑁𝐺(𝐺𝑁) ∧ (𝐺𝑁)𝐷(𝐷‘(𝐺𝑁)) ∧ (𝐷‘(𝐺𝑁))𝐹𝑀)) → (𝐵𝑂𝒫 𝐵):(𝒫 𝒫 𝐵𝑚 𝐵)–1-1-onto→(𝒫 𝐵𝑚 𝒫 𝐵))
39 f1orel 6053 . . . . . . 7 ((𝐵𝑂𝒫 𝐵):(𝒫 𝒫 𝐵𝑚 𝐵)–1-1-onto→(𝒫 𝐵𝑚 𝒫 𝐵) → Rel (𝐵𝑂𝒫 𝐵))
40 relbrcnvg 5423 . . . . . . 7 (Rel (𝐵𝑂𝒫 𝐵) → ((𝐺𝑁)(𝐵𝑂𝒫 𝐵)𝑁𝑁(𝐵𝑂𝒫 𝐵)(𝐺𝑁)))
4138, 39, 403syl 18 . . . . . 6 ((𝜑 ∧ (𝑁𝐺(𝐺𝑁) ∧ (𝐺𝑁)𝐷(𝐷‘(𝐺𝑁)) ∧ (𝐷‘(𝐺𝑁))𝐹𝑀)) → ((𝐺𝑁)(𝐵𝑂𝒫 𝐵)𝑁𝑁(𝐵𝑂𝒫 𝐵)(𝐺𝑁)))
425, 35, 7, 36, 30fsovcnvd 37328 . . . . . . . 8 (𝐵 ∈ V → (𝐵𝑂𝒫 𝐵) = (𝒫 𝐵𝑂𝐵))
4342breqd 4594 . . . . . . 7 (𝐵 ∈ V → ((𝐺𝑁)(𝐵𝑂𝒫 𝐵)𝑁 ↔ (𝐺𝑁)(𝒫 𝐵𝑂𝐵)𝑁))
4434, 43syl 17 . . . . . 6 ((𝜑 ∧ (𝑁𝐺(𝐺𝑁) ∧ (𝐺𝑁)𝐷(𝐷‘(𝐺𝑁)) ∧ (𝐷‘(𝐺𝑁))𝐹𝑀)) → ((𝐺𝑁)(𝐵𝑂𝒫 𝐵)𝑁 ↔ (𝐺𝑁)(𝒫 𝐵𝑂𝐵)𝑁))
4533, 41, 443bitr2d 295 . . . . 5 ((𝜑 ∧ (𝑁𝐺(𝐺𝑁) ∧ (𝐺𝑁)𝐷(𝐷‘(𝐺𝑁)) ∧ (𝐷‘(𝐺𝑁))𝐹𝑀)) → (𝑁𝐺(𝐺𝑁) ↔ (𝐺𝑁)(𝒫 𝐵𝑂𝐵)𝑁))
4631, 45mpbid 221 . . . 4 ((𝜑 ∧ (𝑁𝐺(𝐺𝑁) ∧ (𝐺𝑁)𝐷(𝐷‘(𝐺𝑁)) ∧ (𝐷‘(𝐺𝑁))𝐹𝑀)) → (𝐺𝑁)(𝒫 𝐵𝑂𝐵)𝑁)
475, 30, 46, 26, 28ntrneiel 37399 . . 3 ((𝜑 ∧ (𝑁𝐺(𝐺𝑁) ∧ (𝐺𝑁)𝐷(𝐷‘(𝐺𝑁)) ∧ (𝐷‘(𝐺𝑁))𝐹𝑀)) → (𝑋 ∈ ((𝐺𝑁)‘𝑆) ↔ 𝑆 ∈ (𝑁𝑋)))
48 simpr3 1062 . . . . 5 ((𝜑 ∧ (𝑁𝐺(𝐺𝑁) ∧ (𝐺𝑁)𝐷(𝐷‘(𝐺𝑁)) ∧ (𝐷‘(𝐺𝑁))𝐹𝑀)) → (𝐷‘(𝐺𝑁))𝐹𝑀)
49 difssd 3700 . . . . . . 7 (𝜑 → (𝐵𝑆) ⊆ 𝐵)
504, 49sselpwd 4734 . . . . . 6 (𝜑 → (𝐵𝑆) ∈ 𝒫 𝐵)
5150adantr 480 . . . . 5 ((𝜑 ∧ (𝑁𝐺(𝐺𝑁) ∧ (𝐺𝑁)𝐷(𝐷‘(𝐺𝑁)) ∧ (𝐷‘(𝐺𝑁))𝐹𝑀)) → (𝐵𝑆) ∈ 𝒫 𝐵)
525, 9, 48, 26, 51ntrneiel 37399 . . . 4 ((𝜑 ∧ (𝑁𝐺(𝐺𝑁) ∧ (𝐺𝑁)𝐷(𝐷‘(𝐺𝑁)) ∧ (𝐷‘(𝐺𝑁))𝐹𝑀)) → (𝑋 ∈ ((𝐷‘(𝐺𝑁))‘(𝐵𝑆)) ↔ (𝐵𝑆) ∈ (𝑀𝑋)))
5352notbid 307 . . 3 ((𝜑 ∧ (𝑁𝐺(𝐺𝑁) ∧ (𝐺𝑁)𝐷(𝐷‘(𝐺𝑁)) ∧ (𝐷‘(𝐺𝑁))𝐹𝑀)) → (¬ 𝑋 ∈ ((𝐷‘(𝐺𝑁))‘(𝐵𝑆)) ↔ ¬ (𝐵𝑆) ∈ (𝑀𝑋)))
5429, 47, 533bitr3d 297 . 2 ((𝜑 ∧ (𝑁𝐺(𝐺𝑁) ∧ (𝐺𝑁)𝐷(𝐷‘(𝐺𝑁)) ∧ (𝐷‘(𝐺𝑁))𝐹𝑀)) → (𝑆 ∈ (𝑁𝑋) ↔ ¬ (𝐵𝑆) ∈ (𝑀𝑋)))
5523, 54mpdan 699 1 (𝜑 → (𝑆 ∈ (𝑁𝑋) ↔ ¬ (𝐵𝑆) ∈ (𝑀𝑋)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  {crab 2900  Vcvv 3173  cdif 3537  𝒫 cpw 4108   class class class wbr 4583  cmpt 4643  ccnv 5037  ccom 5042  Rel wrel 5043   Fn wfn 5799  wf 5800  1-1-ontowf1o 5803  cfv 5804  (class class class)co 6549  cmpt2 6551  𝑚 cmap 7744
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-map 7746
This theorem is referenced by:  neicvgel2  37438  neicvgfv  37439
  Copyright terms: Public domain W3C validator