MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  necon2bbii Structured version   Visualization version   GIF version

Theorem necon2bbii 2833
Description: Contrapositive inference for inequality. (Contributed by NM, 13-Apr-2007.)
Hypothesis
Ref Expression
necon2bbii.1 (𝜑𝐴𝐵)
Assertion
Ref Expression
necon2bbii (𝐴 = 𝐵 ↔ ¬ 𝜑)

Proof of Theorem necon2bbii
StepHypRef Expression
1 necon2bbii.1 . . . 4 (𝜑𝐴𝐵)
21bicomi 213 . . 3 (𝐴𝐵𝜑)
32necon1bbii 2831 . 2 𝜑𝐴 = 𝐵)
43bicomi 213 1 (𝐴 = 𝐵 ↔ ¬ 𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 195   = wceq 1475  wne 2780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 196  df-ne 2782
This theorem is referenced by:  xpeq0  5473  dmsn0  5520  disjex  28787  disjexc  28788  suppss3  28890
  Copyright terms: Public domain W3C validator