Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ndmaovrcl | Structured version Visualization version GIF version |
Description: Reverse closure law, in contrast to ndmovrcl 6718 where it is required that the operation's domain doesn't contain the empty set (¬ ∅ ∈ 𝑆), no additional asumption is required. (Contributed by Alexander van der Vekens, 26-May-2017.) |
Ref | Expression |
---|---|
ndmaov.1 | ⊢ dom 𝐹 = (𝑆 × 𝑆) |
Ref | Expression |
---|---|
ndmaovrcl | ⊢ ( ((𝐴𝐹𝐵)) ∈ 𝑆 → (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | aovvdm 39914 | . 2 ⊢ ( ((𝐴𝐹𝐵)) ∈ 𝑆 → 〈𝐴, 𝐵〉 ∈ dom 𝐹) | |
2 | opelxp 5070 | . . . 4 ⊢ (〈𝐴, 𝐵〉 ∈ (𝑆 × 𝑆) ↔ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) | |
3 | 2 | biimpi 205 | . . 3 ⊢ (〈𝐴, 𝐵〉 ∈ (𝑆 × 𝑆) → (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) |
4 | ndmaov.1 | . . 3 ⊢ dom 𝐹 = (𝑆 × 𝑆) | |
5 | 3, 4 | eleq2s 2706 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ dom 𝐹 → (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) |
6 | 1, 5 | syl 17 | 1 ⊢ ( ((𝐴𝐹𝐵)) ∈ 𝑆 → (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1475 ∈ wcel 1977 〈cop 4131 × cxp 5036 dom cdm 5038 ((caov 39844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pr 4833 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-opab 4644 df-xp 5044 df-fv 5812 df-dfat 39845 df-afv 39846 df-aov 39847 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |