Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ncoprmgcdne1b Structured version   Visualization version   GIF version

Theorem ncoprmgcdne1b 15201
 Description: Two positive integers are not coprime, i.e. there is an integer greater than 1 which divides both integers, iff their greatest common divisor is not 1. (Contributed by AV, 9-Aug-2020.)
Assertion
Ref Expression
ncoprmgcdne1b ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∃𝑖 ∈ (ℤ‘2)(𝑖𝐴𝑖𝐵) ↔ (𝐴 gcd 𝐵) ≠ 1))
Distinct variable groups:   𝐴,𝑖   𝐵,𝑖

Proof of Theorem ncoprmgcdne1b
StepHypRef Expression
1 eluz2nn 11602 . . . . . . 7 (𝑖 ∈ (ℤ‘2) → 𝑖 ∈ ℕ)
21adantr 480 . . . . . 6 ((𝑖 ∈ (ℤ‘2) ∧ (𝑖𝐴𝑖𝐵)) → 𝑖 ∈ ℕ)
3 simpr 476 . . . . . . 7 ((𝑖 ∈ (ℤ‘2) ∧ (𝑖𝐴𝑖𝐵)) → (𝑖𝐴𝑖𝐵))
4 eluz2b3 11638 . . . . . . . . 9 (𝑖 ∈ (ℤ‘2) ↔ (𝑖 ∈ ℕ ∧ 𝑖 ≠ 1))
5 df-ne 2782 . . . . . . . . . . 11 (𝑖 ≠ 1 ↔ ¬ 𝑖 = 1)
65biimpi 205 . . . . . . . . . 10 (𝑖 ≠ 1 → ¬ 𝑖 = 1)
76adantl 481 . . . . . . . . 9 ((𝑖 ∈ ℕ ∧ 𝑖 ≠ 1) → ¬ 𝑖 = 1)
84, 7sylbi 206 . . . . . . . 8 (𝑖 ∈ (ℤ‘2) → ¬ 𝑖 = 1)
98adantr 480 . . . . . . 7 ((𝑖 ∈ (ℤ‘2) ∧ (𝑖𝐴𝑖𝐵)) → ¬ 𝑖 = 1)
103, 9jca 553 . . . . . 6 ((𝑖 ∈ (ℤ‘2) ∧ (𝑖𝐴𝑖𝐵)) → ((𝑖𝐴𝑖𝐵) ∧ ¬ 𝑖 = 1))
112, 10jca 553 . . . . 5 ((𝑖 ∈ (ℤ‘2) ∧ (𝑖𝐴𝑖𝐵)) → (𝑖 ∈ ℕ ∧ ((𝑖𝐴𝑖𝐵) ∧ ¬ 𝑖 = 1)))
125biimpri 217 . . . . . . . . . . . . . 14 𝑖 = 1 → 𝑖 ≠ 1)
1312anim1i 590 . . . . . . . . . . . . 13 ((¬ 𝑖 = 1 ∧ 𝑖 ∈ ℕ) → (𝑖 ≠ 1 ∧ 𝑖 ∈ ℕ))
1413ancomd 466 . . . . . . . . . . . 12 ((¬ 𝑖 = 1 ∧ 𝑖 ∈ ℕ) → (𝑖 ∈ ℕ ∧ 𝑖 ≠ 1))
1514, 4sylibr 223 . . . . . . . . . . 11 ((¬ 𝑖 = 1 ∧ 𝑖 ∈ ℕ) → 𝑖 ∈ (ℤ‘2))
1615ex 449 . . . . . . . . . 10 𝑖 = 1 → (𝑖 ∈ ℕ → 𝑖 ∈ (ℤ‘2)))
1716adantl 481 . . . . . . . . 9 (((𝑖𝐴𝑖𝐵) ∧ ¬ 𝑖 = 1) → (𝑖 ∈ ℕ → 𝑖 ∈ (ℤ‘2)))
1817impcom 445 . . . . . . . 8 ((𝑖 ∈ ℕ ∧ ((𝑖𝐴𝑖𝐵) ∧ ¬ 𝑖 = 1)) → 𝑖 ∈ (ℤ‘2))
1918adantl 481 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝑖 ∈ ℕ ∧ ((𝑖𝐴𝑖𝐵) ∧ ¬ 𝑖 = 1))) → 𝑖 ∈ (ℤ‘2))
20 simprrl 800 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝑖 ∈ ℕ ∧ ((𝑖𝐴𝑖𝐵) ∧ ¬ 𝑖 = 1))) → (𝑖𝐴𝑖𝐵))
2119, 20jca 553 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝑖 ∈ ℕ ∧ ((𝑖𝐴𝑖𝐵) ∧ ¬ 𝑖 = 1))) → (𝑖 ∈ (ℤ‘2) ∧ (𝑖𝐴𝑖𝐵)))
2221ex 449 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝑖 ∈ ℕ ∧ ((𝑖𝐴𝑖𝐵) ∧ ¬ 𝑖 = 1)) → (𝑖 ∈ (ℤ‘2) ∧ (𝑖𝐴𝑖𝐵))))
2311, 22impbid2 215 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝑖 ∈ (ℤ‘2) ∧ (𝑖𝐴𝑖𝐵)) ↔ (𝑖 ∈ ℕ ∧ ((𝑖𝐴𝑖𝐵) ∧ ¬ 𝑖 = 1))))
2423exbidv 1837 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∃𝑖(𝑖 ∈ (ℤ‘2) ∧ (𝑖𝐴𝑖𝐵)) ↔ ∃𝑖(𝑖 ∈ ℕ ∧ ((𝑖𝐴𝑖𝐵) ∧ ¬ 𝑖 = 1))))
25 df-rex 2902 . . 3 (∃𝑖 ∈ (ℤ‘2)(𝑖𝐴𝑖𝐵) ↔ ∃𝑖(𝑖 ∈ (ℤ‘2) ∧ (𝑖𝐴𝑖𝐵)))
26 df-rex 2902 . . 3 (∃𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐵) ∧ ¬ 𝑖 = 1) ↔ ∃𝑖(𝑖 ∈ ℕ ∧ ((𝑖𝐴𝑖𝐵) ∧ ¬ 𝑖 = 1)))
2724, 25, 263bitr4g 302 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∃𝑖 ∈ (ℤ‘2)(𝑖𝐴𝑖𝐵) ↔ ∃𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐵) ∧ ¬ 𝑖 = 1)))
28 rexanali 2981 . . 3 (∃𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐵) ∧ ¬ 𝑖 = 1) ↔ ¬ ∀𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐵) → 𝑖 = 1))
2928a1i 11 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∃𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐵) ∧ ¬ 𝑖 = 1) ↔ ¬ ∀𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐵) → 𝑖 = 1)))
30 coprmgcdb 15200 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∀𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐵) → 𝑖 = 1) ↔ (𝐴 gcd 𝐵) = 1))
3130necon3bbid 2819 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (¬ ∀𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐵) → 𝑖 = 1) ↔ (𝐴 gcd 𝐵) ≠ 1))
3227, 29, 313bitrd 293 1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∃𝑖 ∈ (ℤ‘2)(𝑖𝐴𝑖𝐵) ↔ (𝐴 gcd 𝐵) ≠ 1))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 195   ∧ wa 383   = wceq 1475  ∃wex 1695   ∈ wcel 1977   ≠ wne 2780  ∀wral 2896  ∃wrex 2897   class class class wbr 4583  ‘cfv 5804  (class class class)co 6549  1c1 9816  ℕcn 10897  2c2 10947  ℤ≥cuz 11563   ∥ cdvds 14821   gcd cgcd 15054 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-dvds 14822  df-gcd 15055 This theorem is referenced by:  ncoprmgcdgt1b  15202
 Copyright terms: Public domain W3C validator