![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nbgraf1o0 | Structured version Visualization version GIF version |
Description: The set of neighbors of a vertex is isomorphic to the set of indices of edges containing the vertex. (Contributed by Alexander van der Vekens, 19-Dec-2017.) |
Ref | Expression |
---|---|
nbgraf1o.n | ⊢ 𝑁 = (〈𝑉, 𝐸〉 Neighbors 𝑈) |
nbgraf1o.i | ⊢ 𝐼 = {𝑖 ∈ dom 𝐸 ∣ 𝑈 ∈ (𝐸‘𝑖)} |
Ref | Expression |
---|---|
nbgraf1o0 | ⊢ ((𝑉 USGrph 𝐸 ∧ 𝑈 ∈ 𝑉) → ∃𝑓 𝑓:𝑁–1-1-onto→𝐼) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nbgraf1o.n | . . . 4 ⊢ 𝑁 = (〈𝑉, 𝐸〉 Neighbors 𝑈) | |
2 | ovex 6577 | . . . 4 ⊢ (〈𝑉, 𝐸〉 Neighbors 𝑈) ∈ V | |
3 | 1, 2 | eqeltri 2684 | . . 3 ⊢ 𝑁 ∈ V |
4 | mptexg 6389 | . . 3 ⊢ (𝑁 ∈ V → (𝑛 ∈ 𝑁 ↦ (℩𝑖 ∈ 𝐼 (𝐸‘𝑖) = {𝑈, 𝑛})) ∈ V) | |
5 | 3, 4 | mp1i 13 | . 2 ⊢ ((𝑉 USGrph 𝐸 ∧ 𝑈 ∈ 𝑉) → (𝑛 ∈ 𝑁 ↦ (℩𝑖 ∈ 𝐼 (𝐸‘𝑖) = {𝑈, 𝑛})) ∈ V) |
6 | nbgraf1o.i | . . 3 ⊢ 𝐼 = {𝑖 ∈ dom 𝐸 ∣ 𝑈 ∈ (𝐸‘𝑖)} | |
7 | eqid 2610 | . . 3 ⊢ (𝑛 ∈ 𝑁 ↦ (℩𝑖 ∈ 𝐼 (𝐸‘𝑖) = {𝑈, 𝑛})) = (𝑛 ∈ 𝑁 ↦ (℩𝑖 ∈ 𝐼 (𝐸‘𝑖) = {𝑈, 𝑛})) | |
8 | 1, 6, 7 | nbgraf1olem5 25974 | . 2 ⊢ ((𝑉 USGrph 𝐸 ∧ 𝑈 ∈ 𝑉) → (𝑛 ∈ 𝑁 ↦ (℩𝑖 ∈ 𝐼 (𝐸‘𝑖) = {𝑈, 𝑛})):𝑁–1-1-onto→𝐼) |
9 | f1oeq1 6040 | . . 3 ⊢ (𝑓 = (𝑛 ∈ 𝑁 ↦ (℩𝑖 ∈ 𝐼 (𝐸‘𝑖) = {𝑈, 𝑛})) → (𝑓:𝑁–1-1-onto→𝐼 ↔ (𝑛 ∈ 𝑁 ↦ (℩𝑖 ∈ 𝐼 (𝐸‘𝑖) = {𝑈, 𝑛})):𝑁–1-1-onto→𝐼)) | |
10 | 9 | spcegv 3267 | . 2 ⊢ ((𝑛 ∈ 𝑁 ↦ (℩𝑖 ∈ 𝐼 (𝐸‘𝑖) = {𝑈, 𝑛})) ∈ V → ((𝑛 ∈ 𝑁 ↦ (℩𝑖 ∈ 𝐼 (𝐸‘𝑖) = {𝑈, 𝑛})):𝑁–1-1-onto→𝐼 → ∃𝑓 𝑓:𝑁–1-1-onto→𝐼)) |
11 | 5, 8, 10 | sylc 63 | 1 ⊢ ((𝑉 USGrph 𝐸 ∧ 𝑈 ∈ 𝑉) → ∃𝑓 𝑓:𝑁–1-1-onto→𝐼) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1475 ∃wex 1695 ∈ wcel 1977 {crab 2900 Vcvv 3173 {cpr 4127 〈cop 4131 class class class wbr 4583 ↦ cmpt 4643 dom cdm 5038 –1-1-onto→wf1o 5803 ‘cfv 5804 ℩crio 6510 (class class class)co 6549 USGrph cusg 25859 Neighbors cnbgra 25946 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-int 4411 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-1st 7059 df-2nd 7060 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-1o 7447 df-2o 7448 df-oadd 7451 df-er 7629 df-en 7842 df-dom 7843 df-sdom 7844 df-fin 7845 df-card 8648 df-cda 8873 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-nn 10898 df-2 10956 df-n0 11170 df-z 11255 df-uz 11564 df-fz 12198 df-hash 12980 df-usgra 25862 df-nbgra 25949 |
This theorem is referenced by: nbgraf1o 25976 |
Copyright terms: Public domain | W3C validator |