Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nbgrael | Structured version Visualization version GIF version |
Description: The set of neighbors of an element of the first component of an ordered pair, especially of a vertex in a graph. (Contributed by Alexander van der Vekens and Mario Carneiro, 9-Oct-2017.) |
Ref | Expression |
---|---|
nbgrael | ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (𝑁 ∈ (〈𝑉, 𝐸〉 Neighbors 𝐾) ↔ (𝐾 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ∧ {𝐾, 𝑁} ∈ ran 𝐸))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nbgra 25949 | . . . 4 ⊢ Neighbors = (𝑔 ∈ V, 𝑘 ∈ (1st ‘𝑔) ↦ {𝑛 ∈ (1st ‘𝑔) ∣ {𝑘, 𝑛} ∈ ran (2nd ‘𝑔)}) | |
2 | 1 | mpt2xopn0yelv 7226 | . . 3 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (𝑁 ∈ (〈𝑉, 𝐸〉 Neighbors 𝐾) → 𝐾 ∈ 𝑉)) |
3 | 2 | pm4.71rd 665 | . 2 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (𝑁 ∈ (〈𝑉, 𝐸〉 Neighbors 𝐾) ↔ (𝐾 ∈ 𝑉 ∧ 𝑁 ∈ (〈𝑉, 𝐸〉 Neighbors 𝐾)))) |
4 | nbgraop 25952 | . . . . . 6 ⊢ (((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ 𝐾 ∈ 𝑉) → (〈𝑉, 𝐸〉 Neighbors 𝐾) = {𝑛 ∈ 𝑉 ∣ {𝐾, 𝑛} ∈ ran 𝐸}) | |
5 | 4 | eleq2d 2673 | . . . . 5 ⊢ (((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ 𝐾 ∈ 𝑉) → (𝑁 ∈ (〈𝑉, 𝐸〉 Neighbors 𝐾) ↔ 𝑁 ∈ {𝑛 ∈ 𝑉 ∣ {𝐾, 𝑛} ∈ ran 𝐸})) |
6 | preq2 4213 | . . . . . . 7 ⊢ (𝑛 = 𝑁 → {𝐾, 𝑛} = {𝐾, 𝑁}) | |
7 | 6 | eleq1d 2672 | . . . . . 6 ⊢ (𝑛 = 𝑁 → ({𝐾, 𝑛} ∈ ran 𝐸 ↔ {𝐾, 𝑁} ∈ ran 𝐸)) |
8 | 7 | elrab 3331 | . . . . 5 ⊢ (𝑁 ∈ {𝑛 ∈ 𝑉 ∣ {𝐾, 𝑛} ∈ ran 𝐸} ↔ (𝑁 ∈ 𝑉 ∧ {𝐾, 𝑁} ∈ ran 𝐸)) |
9 | 5, 8 | syl6bb 275 | . . . 4 ⊢ (((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) ∧ 𝐾 ∈ 𝑉) → (𝑁 ∈ (〈𝑉, 𝐸〉 Neighbors 𝐾) ↔ (𝑁 ∈ 𝑉 ∧ {𝐾, 𝑁} ∈ ran 𝐸))) |
10 | 9 | pm5.32da 671 | . . 3 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → ((𝐾 ∈ 𝑉 ∧ 𝑁 ∈ (〈𝑉, 𝐸〉 Neighbors 𝐾)) ↔ (𝐾 ∈ 𝑉 ∧ (𝑁 ∈ 𝑉 ∧ {𝐾, 𝑁} ∈ ran 𝐸)))) |
11 | 3anass 1035 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ∧ {𝐾, 𝑁} ∈ ran 𝐸) ↔ (𝐾 ∈ 𝑉 ∧ (𝑁 ∈ 𝑉 ∧ {𝐾, 𝑁} ∈ ran 𝐸))) | |
12 | 10, 11 | syl6bbr 277 | . 2 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → ((𝐾 ∈ 𝑉 ∧ 𝑁 ∈ (〈𝑉, 𝐸〉 Neighbors 𝐾)) ↔ (𝐾 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ∧ {𝐾, 𝑁} ∈ ran 𝐸))) |
13 | 3, 12 | bitrd 267 | 1 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (𝑁 ∈ (〈𝑉, 𝐸〉 Neighbors 𝐾) ↔ (𝐾 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ∧ {𝐾, 𝑁} ∈ ran 𝐸))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∧ wa 383 ∧ w3a 1031 = wceq 1475 ∈ wcel 1977 {crab 2900 {cpr 4127 〈cop 4131 ran crn 5039 ‘cfv 5804 (class class class)co 6549 1st c1st 7057 2nd c2nd 7058 Neighbors cnbgra 25946 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fv 5812 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-1st 7059 df-2nd 7060 df-nbgra 25949 |
This theorem is referenced by: nbgrasym 25968 nbgraf1olem1 25970 usg2spot2nb 26592 extwwlkfablem1 26601 |
Copyright terms: Public domain | W3C validator |