MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  natded Structured version   Visualization version   GIF version

Theorem natded 26652
Description: Here are typical natural deduction (ND) rules in the style of Gentzen and Jaśkowski, along with MPE translations of them. This also shows the recommended theorems when you find yourself needing these rules (the recommendations encourage a slightly different proof style that works more naturally with metamath). A decent list of the standard rules of natural deduction can be found beginning with definition /\I in [Pfenning] p. 18. For information about ND and Metamath, see the page on Deduction Form and Natural Deduction in Metamath Proof Explorer. Many more citations could be added.

NameNatural Deduction RuleTranslation RecommendationComments
IT Γ𝜓 => Γ𝜓 idi 2 nothing Reiteration is always redundant in Metamath. Definition "new rule" in [Pfenning] p. 18, definition IT in [Clemente] p. 10.
I Γ𝜓 & Γ𝜒 => Γ𝜓𝜒 jca 553 jca 553, pm3.2i 470 Definition I in [Pfenning] p. 18, definition Im,n in [Clemente] p. 10, and definition I in [Indrzejczak] p. 34 (representing both Gentzen's system NK and Jaśkowski)
EL Γ𝜓𝜒 => Γ𝜓 simpld 474 simpld 474, adantr 480 Definition EL in [Pfenning] p. 18, definition E(1) in [Clemente] p. 11, and definition E in [Indrzejczak] p. 34 (representing both Gentzen's system NK and Jaśkowski)
ER Γ𝜓𝜒 => Γ𝜒 simprd 478 simpr 476, adantl 481 Definition ER in [Pfenning] p. 18, definition E(2) in [Clemente] p. 11, and definition E in [Indrzejczak] p. 34 (representing both Gentzen's system NK and Jaśkowski)
I Γ, 𝜓𝜒 => Γ𝜓𝜒 ex 449 ex 449 Definition I in [Pfenning] p. 18, definition I=>m,n in [Clemente] p. 11, and definition I in [Indrzejczak] p. 33.
E Γ𝜓𝜒 & Γ𝜓 => Γ𝜒 mpd 15 ax-mp 5, mpd 15, mpdan 699, imp 444 Definition E in [Pfenning] p. 18, definition E=>m,n in [Clemente] p. 11, and definition E in [Indrzejczak] p. 33.
IL Γ𝜓 => Γ𝜓𝜒 olcd 407 olc 398, olci 405, olcd 407 Definition I in [Pfenning] p. 18, definition In(1) in [Clemente] p. 12
IR Γ𝜒 => Γ𝜓𝜒 orcd 406 orc 399, orci 404, orcd 406 Definition IR in [Pfenning] p. 18, definition In(2) in [Clemente] p. 12.
E Γ𝜓𝜒 & Γ, 𝜓𝜃 & Γ, 𝜒𝜃 => Γ𝜃 mpjaodan 823 mpjaodan 823, jaodan 822, jaod 394 Definition E in [Pfenning] p. 18, definition Em,n,p in [Clemente] p. 12.
¬I Γ, 𝜓 => Γ¬ 𝜓 inegd 1494 pm2.01d 180
¬I Γ, 𝜓𝜃 & Γ¬ 𝜃 => Γ¬ 𝜓 mtand 689 mtand 689 definition I¬m,n,p in [Clemente] p. 13.
¬I Γ, 𝜓𝜒 & Γ, 𝜓¬ 𝜒 => Γ¬ 𝜓 pm2.65da 598 pm2.65da 598 Contradiction.
¬I Γ, 𝜓¬ 𝜓 => Γ¬ 𝜓 pm2.01da 457 pm2.01d 180, pm2.65da 598, pm2.65d 186 For an alternative falsum-free natural deduction ruleset
¬E Γ𝜓 & Γ¬ 𝜓 => Γ pm2.21fal 1496 pm2.21dd 185
¬E Γ, ¬ 𝜓 => Γ𝜓 pm2.21dd 185 definition E in [Indrzejczak] p. 33.
¬E Γ𝜓 & Γ¬ 𝜓 => Γ𝜃 pm2.21dd 185 pm2.21dd 185, pm2.21d 117, pm2.21 119 For an alternative falsum-free natural deduction ruleset. Definition ¬E in [Pfenning] p. 18.
I Γ a1tru 1491 tru 1479, a1tru 1491, trud 1484 Definition I in [Pfenning] p. 18.
E Γ, ⊥𝜃 falimd 1490 falim 1489 Definition E in [Pfenning] p. 18.
I Γ[𝑎 / 𝑥]𝜓 => Γ𝑥𝜓 alrimiv 1842 alrimiv 1842, ralrimiva 2949 Definition Ia in [Pfenning] p. 18, definition In in [Clemente] p. 32.
E Γ𝑥𝜓 => Γ[𝑡 / 𝑥]𝜓 spsbcd 3416 spcv 3272, rspcv 3278 Definition E in [Pfenning] p. 18, definition En,t in [Clemente] p. 32.
I Γ[𝑡 / 𝑥]𝜓 => Γ𝑥𝜓 spesbcd 3488 spcev 3273, rspcev 3282 Definition I in [Pfenning] p. 18, definition In,t in [Clemente] p. 32.
E Γ𝑥𝜓 & Γ, [𝑎 / 𝑥]𝜓𝜃 => Γ𝜃 exlimddv 1850 exlimddv 1850, exlimdd 2075, exlimdv 1848, rexlimdva 3013 Definition Ea,u in [Pfenning] p. 18, definition Em,n,p,a in [Clemente] p. 32.
C Γ, ¬ 𝜓 => Γ𝜓 efald 1495 efald 1495 Proof by contradiction (classical logic), definition C in [Pfenning] p. 17.
C Γ, ¬ 𝜓𝜓 => Γ𝜓 pm2.18da 458 pm2.18da 458, pm2.18d 123, pm2.18 121 For an alternative falsum-free natural deduction ruleset
¬ ¬C Γ¬ ¬ 𝜓 => Γ𝜓 notnotrd 127 notnotrd 127, notnotr 124 Double negation rule (classical logic), definition NNC in [Pfenning] p. 17, definition E¬n in [Clemente] p. 14.
EM Γ𝜓 ∨ ¬ 𝜓 exmidd 431 exmid 430 Excluded middle (classical logic), definition XM in [Pfenning] p. 17, proof 5.11 in [Clemente] p. 14.
=I Γ𝐴 = 𝐴 eqidd 2611 eqid 2610, eqidd 2611 Introduce equality, definition =I in [Pfenning] p. 127.
=E Γ𝐴 = 𝐵 & Γ[𝐴 / 𝑥]𝜓 => Γ[𝐵 / 𝑥]𝜓 sbceq1dd 3408 sbceq1d 3407, equality theorems Eliminate equality, definition =E in [Pfenning] p. 127. (Both E1 and E2.)

Note that MPE uses classical logic, not intuitionist logic. As is conventional, the "I" rules are introduction rules, "E" rules are elimination rules, the "C" rules are conversion rules, and Γ represents the set of (current) hypotheses. We use wff variable names beginning with 𝜓 to provide a closer representation of the Metamath equivalents (which typically use the antedent 𝜑 to represent the context Γ).

Most of this information was developed by Mario Carneiro and posted on 3-Feb-2017. For more information, see the page on Deduction Form and Natural Deduction in Metamath Proof Explorer.

For annotated examples where some traditional ND rules are directly applied in MPE, see ex-natded5.2 26653, ex-natded5.3 26656, ex-natded5.5 26659, ex-natded5.7 26660, ex-natded5.8 26662, ex-natded5.13 26664, ex-natded9.20 26666, and ex-natded9.26 26668.

(Contributed by DAW, 4-Feb-2017.) (New usage is discouraged.)

Hypothesis
Ref Expression
natded.1 𝜑
Assertion
Ref Expression
natded 𝜑

Proof of Theorem natded
StepHypRef Expression
1 natded.1 1 𝜑
Colors of variables: wff setvar class
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator