MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nanbi2i Structured version   Visualization version   GIF version

Theorem nanbi2i 1451
Description: Introduce a left anti-conjunct to both sides of a logical equivalence. (Contributed by SF, 2-Jan-2018.)
Hypothesis
Ref Expression
nanbii.1 (𝜑𝜓)
Assertion
Ref Expression
nanbi2i ((𝜒𝜑) ↔ (𝜒𝜓))

Proof of Theorem nanbi2i
StepHypRef Expression
1 nanbii.1 . 2 (𝜑𝜓)
2 nanbi2 1448 . 2 ((𝜑𝜓) → ((𝜒𝜑) ↔ (𝜒𝜓)))
31, 2ax-mp 5 1 ((𝜒𝜑) ↔ (𝜒𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 195  wnan 1439
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 196  df-an 385  df-nan 1440
This theorem is referenced by:  nabi2i  31562  rp-fakenanass  36879
  Copyright terms: Public domain W3C validator