Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nanbi1d | Structured version Visualization version GIF version |
Description: Introduce a right anti-conjunct to both sides of a logical equivalence. (Contributed by SF, 2-Jan-2018.) |
Ref | Expression |
---|---|
nanbid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
nanbi1d | ⊢ (𝜑 → ((𝜓 ⊼ 𝜃) ↔ (𝜒 ⊼ 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nanbid.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | nanbi1 1447 | . 2 ⊢ ((𝜓 ↔ 𝜒) → ((𝜓 ⊼ 𝜃) ↔ (𝜒 ⊼ 𝜃))) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ((𝜓 ⊼ 𝜃) ↔ (𝜒 ⊼ 𝜃))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ⊼ wnan 1439 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 196 df-an 385 df-nan 1440 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |