MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  n0ii Structured version   Visualization version   GIF version

Theorem n0ii 3881
Description: If a set has elements, then it is not empty. Inference associated with n0i 3879. (Contributed by BJ, 15-Jul-2021.)
Hypothesis
Ref Expression
n0ii.1 𝐴𝐵
Assertion
Ref Expression
n0ii ¬ 𝐵 = ∅

Proof of Theorem n0ii
StepHypRef Expression
1 n0ii.1 . 2 𝐴𝐵
2 n0i 3879 . 2 (𝐴𝐵 → ¬ 𝐵 = ∅)
31, 2ax-mp 5 1 ¬ 𝐵 = ∅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1475  wcel 1977  c0 3874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-v 3175  df-dif 3543  df-nul 3875
This theorem is referenced by:  iin0  4765  snsn0non  5763  tfrlem16  7376  pwcdadom  8921  nnunb  11165  hon0  28036  dmadjrnb  28149  bnj98  30191  dvnprodlem3  38838
  Copyright terms: Public domain W3C validator