Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > n0ii | Structured version Visualization version GIF version |
Description: If a set has elements, then it is not empty. Inference associated with n0i 3879. (Contributed by BJ, 15-Jul-2021.) |
Ref | Expression |
---|---|
n0ii.1 | ⊢ 𝐴 ∈ 𝐵 |
Ref | Expression |
---|---|
n0ii | ⊢ ¬ 𝐵 = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0ii.1 | . 2 ⊢ 𝐴 ∈ 𝐵 | |
2 | n0i 3879 | . 2 ⊢ (𝐴 ∈ 𝐵 → ¬ 𝐵 = ∅) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ¬ 𝐵 = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1475 ∈ wcel 1977 ∅c0 3874 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-v 3175 df-dif 3543 df-nul 3875 |
This theorem is referenced by: iin0 4765 snsn0non 5763 tfrlem16 7376 pwcdadom 8921 nnunb 11165 hon0 28036 dmadjrnb 28149 bnj98 30191 dvnprodlem3 38838 |
Copyright terms: Public domain | W3C validator |