Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  muval2 Structured version   Visualization version   GIF version

Theorem muval2 24660
 Description: The value of the Möbius function at a squarefree number. (Contributed by Mario Carneiro, 3-Oct-2014.)
Assertion
Ref Expression
muval2 ((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) → (μ‘𝐴) = (-1↑(#‘{𝑝 ∈ ℙ ∣ 𝑝𝐴})))
Distinct variable group:   𝐴,𝑝

Proof of Theorem muval2
StepHypRef Expression
1 df-ne 2782 . . 3 ((μ‘𝐴) ≠ 0 ↔ ¬ (μ‘𝐴) = 0)
2 ifeqor 4082 . . . . 5 (if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(#‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}))) = 0 ∨ if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(#‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}))) = (-1↑(#‘{𝑝 ∈ ℙ ∣ 𝑝𝐴})))
3 muval 24658 . . . . . . 7 (𝐴 ∈ ℕ → (μ‘𝐴) = if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(#‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}))))
43eqeq1d 2612 . . . . . 6 (𝐴 ∈ ℕ → ((μ‘𝐴) = 0 ↔ if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(#‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}))) = 0))
53eqeq1d 2612 . . . . . 6 (𝐴 ∈ ℕ → ((μ‘𝐴) = (-1↑(#‘{𝑝 ∈ ℙ ∣ 𝑝𝐴})) ↔ if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(#‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}))) = (-1↑(#‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}))))
64, 5orbi12d 742 . . . . 5 (𝐴 ∈ ℕ → (((μ‘𝐴) = 0 ∨ (μ‘𝐴) = (-1↑(#‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}))) ↔ (if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(#‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}))) = 0 ∨ if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(#‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}))) = (-1↑(#‘{𝑝 ∈ ℙ ∣ 𝑝𝐴})))))
72, 6mpbiri 247 . . . 4 (𝐴 ∈ ℕ → ((μ‘𝐴) = 0 ∨ (μ‘𝐴) = (-1↑(#‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}))))
87ord 391 . . 3 (𝐴 ∈ ℕ → (¬ (μ‘𝐴) = 0 → (μ‘𝐴) = (-1↑(#‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}))))
91, 8syl5bi 231 . 2 (𝐴 ∈ ℕ → ((μ‘𝐴) ≠ 0 → (μ‘𝐴) = (-1↑(#‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}))))
109imp 444 1 ((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) → (μ‘𝐴) = (-1↑(#‘{𝑝 ∈ ℙ ∣ 𝑝𝐴})))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∨ wo 382   ∧ wa 383   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ∃wrex 2897  {crab 2900  ifcif 4036   class class class wbr 4583  ‘cfv 5804  (class class class)co 6549  0cc0 9815  1c1 9816  -cneg 10146  ℕcn 10897  2c2 10947  ↑cexp 12722  #chash 12979   ∥ cdvds 14821  ℙcprime 15223  μcmu 24621 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-mulcl 9877  ax-i2m1 9883 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-iota 5768  df-fun 5806  df-fv 5812  df-ov 6552  df-mu 24627 This theorem is referenced by:  mumul  24707  musum  24717
 Copyright terms: Public domain W3C validator