MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulsub Structured version   Visualization version   GIF version

Theorem mulsub 10352
Description: Product of two differences. (Contributed by NM, 14-Jan-2006.)
Assertion
Ref Expression
mulsub (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴𝐵) · (𝐶𝐷)) = (((𝐴 · 𝐶) + (𝐷 · 𝐵)) − ((𝐴 · 𝐷) + (𝐶 · 𝐵))))

Proof of Theorem mulsub
StepHypRef Expression
1 negsub 10208 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + -𝐵) = (𝐴𝐵))
2 negsub 10208 . . 3 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐶 + -𝐷) = (𝐶𝐷))
31, 2oveqan12d 6568 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + -𝐵) · (𝐶 + -𝐷)) = ((𝐴𝐵) · (𝐶𝐷)))
4 negcl 10160 . . . 4 (𝐵 ∈ ℂ → -𝐵 ∈ ℂ)
5 negcl 10160 . . . . 5 (𝐷 ∈ ℂ → -𝐷 ∈ ℂ)
6 muladd 10341 . . . . 5 (((𝐴 ∈ ℂ ∧ -𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ -𝐷 ∈ ℂ)) → ((𝐴 + -𝐵) · (𝐶 + -𝐷)) = (((𝐴 · 𝐶) + (-𝐷 · -𝐵)) + ((𝐴 · -𝐷) + (𝐶 · -𝐵))))
75, 6sylanr2 683 . . . 4 (((𝐴 ∈ ℂ ∧ -𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + -𝐵) · (𝐶 + -𝐷)) = (((𝐴 · 𝐶) + (-𝐷 · -𝐵)) + ((𝐴 · -𝐷) + (𝐶 · -𝐵))))
84, 7sylanl2 681 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + -𝐵) · (𝐶 + -𝐷)) = (((𝐴 · 𝐶) + (-𝐷 · -𝐵)) + ((𝐴 · -𝐷) + (𝐶 · -𝐵))))
9 mul2neg 10348 . . . . . . 7 ((𝐷 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐷 · -𝐵) = (𝐷 · 𝐵))
109ancoms 468 . . . . . 6 ((𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (-𝐷 · -𝐵) = (𝐷 · 𝐵))
1110oveq2d 6565 . . . . 5 ((𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) → ((𝐴 · 𝐶) + (-𝐷 · -𝐵)) = ((𝐴 · 𝐶) + (𝐷 · 𝐵)))
1211ad2ant2l 778 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 · 𝐶) + (-𝐷 · -𝐵)) = ((𝐴 · 𝐶) + (𝐷 · 𝐵)))
13 mulneg2 10346 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐴 · -𝐷) = -(𝐴 · 𝐷))
14 mulneg2 10346 . . . . . . . 8 ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐶 · -𝐵) = -(𝐶 · 𝐵))
1513, 14oveqan12d 6568 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ)) → ((𝐴 · -𝐷) + (𝐶 · -𝐵)) = (-(𝐴 · 𝐷) + -(𝐶 · 𝐵)))
16 mulcl 9899 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐴 · 𝐷) ∈ ℂ)
17 mulcl 9899 . . . . . . . 8 ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐶 · 𝐵) ∈ ℂ)
18 negdi 10217 . . . . . . . 8 (((𝐴 · 𝐷) ∈ ℂ ∧ (𝐶 · 𝐵) ∈ ℂ) → -((𝐴 · 𝐷) + (𝐶 · 𝐵)) = (-(𝐴 · 𝐷) + -(𝐶 · 𝐵)))
1916, 17, 18syl2an 493 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ)) → -((𝐴 · 𝐷) + (𝐶 · 𝐵)) = (-(𝐴 · 𝐷) + -(𝐶 · 𝐵)))
2015, 19eqtr4d 2647 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ)) → ((𝐴 · -𝐷) + (𝐶 · -𝐵)) = -((𝐴 · 𝐷) + (𝐶 · 𝐵)))
2120ancom2s 840 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) → ((𝐴 · -𝐷) + (𝐶 · -𝐵)) = -((𝐴 · 𝐷) + (𝐶 · 𝐵)))
2221an42s 866 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 · -𝐷) + (𝐶 · -𝐵)) = -((𝐴 · 𝐷) + (𝐶 · 𝐵)))
2312, 22oveq12d 6567 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((𝐴 · 𝐶) + (-𝐷 · -𝐵)) + ((𝐴 · -𝐷) + (𝐶 · -𝐵))) = (((𝐴 · 𝐶) + (𝐷 · 𝐵)) + -((𝐴 · 𝐷) + (𝐶 · 𝐵))))
24 mulcl 9899 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · 𝐶) ∈ ℂ)
25 mulcl 9899 . . . . . . 7 ((𝐷 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐷 · 𝐵) ∈ ℂ)
2625ancoms 468 . . . . . 6 ((𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐷 · 𝐵) ∈ ℂ)
27 addcl 9897 . . . . . 6 (((𝐴 · 𝐶) ∈ ℂ ∧ (𝐷 · 𝐵) ∈ ℂ) → ((𝐴 · 𝐶) + (𝐷 · 𝐵)) ∈ ℂ)
2824, 26, 27syl2an 493 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 · 𝐶) + (𝐷 · 𝐵)) ∈ ℂ)
2928an4s 865 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 · 𝐶) + (𝐷 · 𝐵)) ∈ ℂ)
3017ancoms 468 . . . . . 6 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐶 · 𝐵) ∈ ℂ)
31 addcl 9897 . . . . . 6 (((𝐴 · 𝐷) ∈ ℂ ∧ (𝐶 · 𝐵) ∈ ℂ) → ((𝐴 · 𝐷) + (𝐶 · 𝐵)) ∈ ℂ)
3216, 30, 31syl2an 493 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) → ((𝐴 · 𝐷) + (𝐶 · 𝐵)) ∈ ℂ)
3332an42s 866 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 · 𝐷) + (𝐶 · 𝐵)) ∈ ℂ)
3429, 33negsubd 10277 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((𝐴 · 𝐶) + (𝐷 · 𝐵)) + -((𝐴 · 𝐷) + (𝐶 · 𝐵))) = (((𝐴 · 𝐶) + (𝐷 · 𝐵)) − ((𝐴 · 𝐷) + (𝐶 · 𝐵))))
358, 23, 343eqtrd 2648 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + -𝐵) · (𝐶 + -𝐷)) = (((𝐴 · 𝐶) + (𝐷 · 𝐵)) − ((𝐴 · 𝐷) + (𝐶 · 𝐵))))
363, 35eqtr3d 2646 1 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴𝐵) · (𝐶𝐷)) = (((𝐴 · 𝐶) + (𝐷 · 𝐵)) − ((𝐴 · 𝐷) + (𝐶 · 𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  (class class class)co 6549  cc 9813   + caddc 9818   · cmul 9820  cmin 10145  -cneg 10146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-ltxr 9958  df-sub 10147  df-neg 10148
This theorem is referenced by:  mulsubd  10369  muleqadd  10550  addltmul  11145  sqabssub  13871  mod2xnegi  15613  addltmulALT  28689
  Copyright terms: Public domain W3C validator