MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulre Structured version   Visualization version   GIF version

Theorem mulre 13709
Description: A product with a nonzero real multiplier is real iff the multiplicand is real. (Contributed by NM, 21-Aug-2008.)
Assertion
Ref Expression
mulre ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 ∈ ℝ ↔ (𝐵 · 𝐴) ∈ ℝ))

Proof of Theorem mulre
StepHypRef Expression
1 rereb 13708 . . 3 (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (ℜ‘𝐴) = 𝐴))
213ad2ant1 1075 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 ∈ ℝ ↔ (ℜ‘𝐴) = 𝐴))
3 recl 13698 . . . . 5 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
43recnd 9947 . . . 4 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℂ)
543ad2ant1 1075 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (ℜ‘𝐴) ∈ ℂ)
6 simp1 1054 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → 𝐴 ∈ ℂ)
7 recn 9905 . . . . 5 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
87anim1i 590 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
983adant1 1072 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
10 mulcan 10543 . . 3 (((ℜ‘𝐴) ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → ((𝐵 · (ℜ‘𝐴)) = (𝐵 · 𝐴) ↔ (ℜ‘𝐴) = 𝐴))
115, 6, 9, 10syl3anc 1318 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → ((𝐵 · (ℜ‘𝐴)) = (𝐵 · 𝐴) ↔ (ℜ‘𝐴) = 𝐴))
127adantr 480 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℂ) → 𝐵 ∈ ℂ)
134adantl 481 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℂ) → (ℜ‘𝐴) ∈ ℂ)
14 ax-icn 9874 . . . . . . . . . . . 12 i ∈ ℂ
15 imcl 13699 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ)
1615recnd 9947 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℂ)
17 mulcl 9899 . . . . . . . . . . . 12 ((i ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → (i · (ℑ‘𝐴)) ∈ ℂ)
1814, 16, 17sylancr 694 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (i · (ℑ‘𝐴)) ∈ ℂ)
1918adantl 481 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℂ) → (i · (ℑ‘𝐴)) ∈ ℂ)
2012, 13, 19adddid 9943 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℂ) → (𝐵 · ((ℜ‘𝐴) + (i · (ℑ‘𝐴)))) = ((𝐵 · (ℜ‘𝐴)) + (𝐵 · (i · (ℑ‘𝐴)))))
21 replim 13704 . . . . . . . . . . 11 (𝐴 ∈ ℂ → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))))
2221adantl 481 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℂ) → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))))
2322oveq2d 6565 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℂ) → (𝐵 · 𝐴) = (𝐵 · ((ℜ‘𝐴) + (i · (ℑ‘𝐴)))))
24 mul12 10081 . . . . . . . . . . . 12 ((i ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → (i · (𝐵 · (ℑ‘𝐴))) = (𝐵 · (i · (ℑ‘𝐴))))
2514, 24mp3an1 1403 . . . . . . . . . . 11 ((𝐵 ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → (i · (𝐵 · (ℑ‘𝐴))) = (𝐵 · (i · (ℑ‘𝐴))))
267, 16, 25syl2an 493 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℂ) → (i · (𝐵 · (ℑ‘𝐴))) = (𝐵 · (i · (ℑ‘𝐴))))
2726oveq2d 6565 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℂ) → ((𝐵 · (ℜ‘𝐴)) + (i · (𝐵 · (ℑ‘𝐴)))) = ((𝐵 · (ℜ‘𝐴)) + (𝐵 · (i · (ℑ‘𝐴)))))
2820, 23, 273eqtr4d 2654 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℂ) → (𝐵 · 𝐴) = ((𝐵 · (ℜ‘𝐴)) + (i · (𝐵 · (ℑ‘𝐴)))))
2928fveq2d 6107 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℂ) → (ℜ‘(𝐵 · 𝐴)) = (ℜ‘((𝐵 · (ℜ‘𝐴)) + (i · (𝐵 · (ℑ‘𝐴))))))
30 remulcl 9900 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ (ℜ‘𝐴) ∈ ℝ) → (𝐵 · (ℜ‘𝐴)) ∈ ℝ)
313, 30sylan2 490 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℂ) → (𝐵 · (ℜ‘𝐴)) ∈ ℝ)
32 remulcl 9900 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ (ℑ‘𝐴) ∈ ℝ) → (𝐵 · (ℑ‘𝐴)) ∈ ℝ)
3315, 32sylan2 490 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℂ) → (𝐵 · (ℑ‘𝐴)) ∈ ℝ)
34 crre 13702 . . . . . . . 8 (((𝐵 · (ℜ‘𝐴)) ∈ ℝ ∧ (𝐵 · (ℑ‘𝐴)) ∈ ℝ) → (ℜ‘((𝐵 · (ℜ‘𝐴)) + (i · (𝐵 · (ℑ‘𝐴))))) = (𝐵 · (ℜ‘𝐴)))
3531, 33, 34syl2anc 691 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℂ) → (ℜ‘((𝐵 · (ℜ‘𝐴)) + (i · (𝐵 · (ℑ‘𝐴))))) = (𝐵 · (ℜ‘𝐴)))
3629, 35eqtr2d 2645 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℂ) → (𝐵 · (ℜ‘𝐴)) = (ℜ‘(𝐵 · 𝐴)))
3736eqeq1d 2612 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℂ) → ((𝐵 · (ℜ‘𝐴)) = (𝐵 · 𝐴) ↔ (ℜ‘(𝐵 · 𝐴)) = (𝐵 · 𝐴)))
38 mulcl 9899 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐵 · 𝐴) ∈ ℂ)
397, 38sylan 487 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℂ) → (𝐵 · 𝐴) ∈ ℂ)
40 rereb 13708 . . . . . 6 ((𝐵 · 𝐴) ∈ ℂ → ((𝐵 · 𝐴) ∈ ℝ ↔ (ℜ‘(𝐵 · 𝐴)) = (𝐵 · 𝐴)))
4139, 40syl 17 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℂ) → ((𝐵 · 𝐴) ∈ ℝ ↔ (ℜ‘(𝐵 · 𝐴)) = (𝐵 · 𝐴)))
4237, 41bitr4d 270 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℂ) → ((𝐵 · (ℜ‘𝐴)) = (𝐵 · 𝐴) ↔ (𝐵 · 𝐴) ∈ ℝ))
4342ancoms 468 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ) → ((𝐵 · (ℜ‘𝐴)) = (𝐵 · 𝐴) ↔ (𝐵 · 𝐴) ∈ ℝ))
44433adant3 1074 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → ((𝐵 · (ℜ‘𝐴)) = (𝐵 · 𝐴) ↔ (𝐵 · 𝐴) ∈ ℝ))
452, 11, 443bitr2d 295 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 ∈ ℝ ↔ (𝐵 · 𝐴) ∈ ℝ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  cfv 5804  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815  ici 9817   + caddc 9818   · cmul 9820  cre 13685  cim 13686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-2 10956  df-cj 13687  df-re 13688  df-im 13689
This theorem is referenced by:  sineq0  24077  sineq0ALT  38195
  Copyright terms: Public domain W3C validator