Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulmarep1el Structured version   Visualization version   GIF version

Theorem mulmarep1el 20197
 Description: Element by element multiplication of a matrix with an identity matrix with a column replaced by a vector. (Contributed by AV, 16-Feb-2019.) (Revised by AV, 26-Feb-2019.)
Hypotheses
Ref Expression
marepvcl.a 𝐴 = (𝑁 Mat 𝑅)
marepvcl.b 𝐵 = (Base‘𝐴)
marepvcl.v 𝑉 = ((Base‘𝑅) ↑𝑚 𝑁)
ma1repvcl.1 1 = (1r𝐴)
mulmarep1el.0 0 = (0g𝑅)
mulmarep1el.e 𝐸 = (( 1 (𝑁 matRepV 𝑅)𝐶)‘𝐾)
Assertion
Ref Expression
mulmarep1el ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁𝐿𝑁)) → ((𝐼𝑋𝐿)(.r𝑅)(𝐿𝐸𝐽)) = if(𝐽 = 𝐾, ((𝐼𝑋𝐿)(.r𝑅)(𝐶𝐿)), if(𝐽 = 𝐿, (𝐼𝑋𝐿), 0 )))

Proof of Theorem mulmarep1el
StepHypRef Expression
1 simp3 1056 . . . . 5 ((𝐼𝑁𝐽𝑁𝐿𝑁) → 𝐿𝑁)
2 simp2 1055 . . . . 5 ((𝐼𝑁𝐽𝑁𝐿𝑁) → 𝐽𝑁)
31, 2jca 553 . . . 4 ((𝐼𝑁𝐽𝑁𝐿𝑁) → (𝐿𝑁𝐽𝑁))
4 marepvcl.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
5 marepvcl.b . . . . 5 𝐵 = (Base‘𝐴)
6 marepvcl.v . . . . 5 𝑉 = ((Base‘𝑅) ↑𝑚 𝑁)
7 ma1repvcl.1 . . . . 5 1 = (1r𝐴)
8 mulmarep1el.0 . . . . 5 0 = (0g𝑅)
9 mulmarep1el.e . . . . 5 𝐸 = (( 1 (𝑁 matRepV 𝑅)𝐶)‘𝐾)
104, 5, 6, 7, 8, 9ma1repveval 20196 . . . 4 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐿𝑁𝐽𝑁)) → (𝐿𝐸𝐽) = if(𝐽 = 𝐾, (𝐶𝐿), if(𝐽 = 𝐿, (1r𝑅), 0 )))
113, 10syl3an3 1353 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁𝐿𝑁)) → (𝐿𝐸𝐽) = if(𝐽 = 𝐾, (𝐶𝐿), if(𝐽 = 𝐿, (1r𝑅), 0 )))
1211oveq2d 6565 . 2 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁𝐿𝑁)) → ((𝐼𝑋𝐿)(.r𝑅)(𝐿𝐸𝐽)) = ((𝐼𝑋𝐿)(.r𝑅)if(𝐽 = 𝐾, (𝐶𝐿), if(𝐽 = 𝐿, (1r𝑅), 0 ))))
13 ovif2 6636 . . 3 ((𝐼𝑋𝐿)(.r𝑅)if(𝐽 = 𝐾, (𝐶𝐿), if(𝐽 = 𝐿, (1r𝑅), 0 ))) = if(𝐽 = 𝐾, ((𝐼𝑋𝐿)(.r𝑅)(𝐶𝐿)), ((𝐼𝑋𝐿)(.r𝑅)if(𝐽 = 𝐿, (1r𝑅), 0 )))
1413a1i 11 . 2 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁𝐿𝑁)) → ((𝐼𝑋𝐿)(.r𝑅)if(𝐽 = 𝐾, (𝐶𝐿), if(𝐽 = 𝐿, (1r𝑅), 0 ))) = if(𝐽 = 𝐾, ((𝐼𝑋𝐿)(.r𝑅)(𝐶𝐿)), ((𝐼𝑋𝐿)(.r𝑅)if(𝐽 = 𝐿, (1r𝑅), 0 ))))
15 ovif2 6636 . . . 4 ((𝐼𝑋𝐿)(.r𝑅)if(𝐽 = 𝐿, (1r𝑅), 0 )) = if(𝐽 = 𝐿, ((𝐼𝑋𝐿)(.r𝑅)(1r𝑅)), ((𝐼𝑋𝐿)(.r𝑅) 0 ))
16 simp1 1054 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁𝐿𝑁)) → 𝑅 ∈ Ring)
17 simp1 1054 . . . . . . . 8 ((𝐼𝑁𝐽𝑁𝐿𝑁) → 𝐼𝑁)
18173ad2ant3 1077 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁𝐿𝑁)) → 𝐼𝑁)
1913ad2ant3 1077 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁𝐿𝑁)) → 𝐿𝑁)
205eleq2i 2680 . . . . . . . . . 10 (𝑋𝐵𝑋 ∈ (Base‘𝐴))
2120biimpi 205 . . . . . . . . 9 (𝑋𝐵𝑋 ∈ (Base‘𝐴))
22213ad2ant1 1075 . . . . . . . 8 ((𝑋𝐵𝐶𝑉𝐾𝑁) → 𝑋 ∈ (Base‘𝐴))
23223ad2ant2 1076 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁𝐿𝑁)) → 𝑋 ∈ (Base‘𝐴))
24 eqid 2610 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
254, 24matecl 20050 . . . . . . 7 ((𝐼𝑁𝐿𝑁𝑋 ∈ (Base‘𝐴)) → (𝐼𝑋𝐿) ∈ (Base‘𝑅))
2618, 19, 23, 25syl3anc 1318 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁𝐿𝑁)) → (𝐼𝑋𝐿) ∈ (Base‘𝑅))
27 eqid 2610 . . . . . . 7 (.r𝑅) = (.r𝑅)
28 eqid 2610 . . . . . . 7 (1r𝑅) = (1r𝑅)
2924, 27, 28ringridm 18395 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝐼𝑋𝐿) ∈ (Base‘𝑅)) → ((𝐼𝑋𝐿)(.r𝑅)(1r𝑅)) = (𝐼𝑋𝐿))
3016, 26, 29syl2anc 691 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁𝐿𝑁)) → ((𝐼𝑋𝐿)(.r𝑅)(1r𝑅)) = (𝐼𝑋𝐿))
3124, 27, 8ringrz 18411 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝐼𝑋𝐿) ∈ (Base‘𝑅)) → ((𝐼𝑋𝐿)(.r𝑅) 0 ) = 0 )
3216, 26, 31syl2anc 691 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁𝐿𝑁)) → ((𝐼𝑋𝐿)(.r𝑅) 0 ) = 0 )
3330, 32ifeq12d 4056 . . . 4 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁𝐿𝑁)) → if(𝐽 = 𝐿, ((𝐼𝑋𝐿)(.r𝑅)(1r𝑅)), ((𝐼𝑋𝐿)(.r𝑅) 0 )) = if(𝐽 = 𝐿, (𝐼𝑋𝐿), 0 ))
3415, 33syl5eq 2656 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁𝐿𝑁)) → ((𝐼𝑋𝐿)(.r𝑅)if(𝐽 = 𝐿, (1r𝑅), 0 )) = if(𝐽 = 𝐿, (𝐼𝑋𝐿), 0 ))
3534ifeq2d 4055 . 2 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁𝐿𝑁)) → if(𝐽 = 𝐾, ((𝐼𝑋𝐿)(.r𝑅)(𝐶𝐿)), ((𝐼𝑋𝐿)(.r𝑅)if(𝐽 = 𝐿, (1r𝑅), 0 ))) = if(𝐽 = 𝐾, ((𝐼𝑋𝐿)(.r𝑅)(𝐶𝐿)), if(𝐽 = 𝐿, (𝐼𝑋𝐿), 0 )))
3612, 14, 353eqtrd 2648 1 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁𝐿𝑁)) → ((𝐼𝑋𝐿)(.r𝑅)(𝐿𝐸𝐽)) = if(𝐽 = 𝐾, ((𝐼𝑋𝐿)(.r𝑅)(𝐶𝐿)), if(𝐽 = 𝐿, (𝐼𝑋𝐿), 0 )))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  ifcif 4036  ‘cfv 5804  (class class class)co 6549   ↑𝑚 cmap 7744  Basecbs 15695  .rcmulr 15769  0gc0g 15923  1rcur 18324  Ringcrg 18370   Mat cmat 20032   matRepV cmatrepV 20182 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-ot 4134  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-sup 8231  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-fz 12198  df-fzo 12335  df-seq 12664  df-hash 12980  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-hom 15793  df-cco 15794  df-0g 15925  df-gsum 15926  df-prds 15931  df-pws 15933  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mhm 17158  df-submnd 17159  df-grp 17248  df-minusg 17249  df-sbg 17250  df-mulg 17364  df-subg 17414  df-ghm 17481  df-cntz 17573  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-subrg 18601  df-lmod 18688  df-lss 18754  df-sra 18993  df-rgmod 18994  df-dsmm 19895  df-frlm 19910  df-mamu 20009  df-mat 20033  df-marepv 20184 This theorem is referenced by:  mulmarep1gsum1  20198  mulmarep1gsum2  20199
 Copyright terms: Public domain W3C validator