MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulge0b Structured version   Visualization version   GIF version

Theorem mulge0b 10772
Description: A condition for multiplication to be nonnegative. (Contributed by Scott Fenton, 25-Jun-2013.)
Assertion
Ref Expression
mulge0b ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ (𝐴 · 𝐵) ↔ ((𝐴 ≤ 0 ∧ 𝐵 ≤ 0) ∨ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵))))

Proof of Theorem mulge0b
StepHypRef Expression
1 ianor 508 . . . . 5 (¬ (𝐴 ≤ 0 ∧ 𝐵 ≤ 0) ↔ (¬ 𝐴 ≤ 0 ∨ ¬ 𝐵 ≤ 0))
2 0re 9919 . . . . . . . . . 10 0 ∈ ℝ
3 ltnle 9996 . . . . . . . . . 10 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < 𝐴 ↔ ¬ 𝐴 ≤ 0))
42, 3mpan 702 . . . . . . . . 9 (𝐴 ∈ ℝ → (0 < 𝐴 ↔ ¬ 𝐴 ≤ 0))
54adantr 480 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < 𝐴 ↔ ¬ 𝐴 ≤ 0))
6 ltnle 9996 . . . . . . . . . 10 ((0 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < 𝐵 ↔ ¬ 𝐵 ≤ 0))
72, 6mpan 702 . . . . . . . . 9 (𝐵 ∈ ℝ → (0 < 𝐵 ↔ ¬ 𝐵 ≤ 0))
87adantl 481 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < 𝐵 ↔ ¬ 𝐵 ≤ 0))
95, 8orbi12d 742 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 < 𝐴 ∨ 0 < 𝐵) ↔ (¬ 𝐴 ≤ 0 ∨ ¬ 𝐵 ≤ 0)))
109adantr 480 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 ≤ (𝐴 · 𝐵)) → ((0 < 𝐴 ∨ 0 < 𝐵) ↔ (¬ 𝐴 ≤ 0 ∨ ¬ 𝐵 ≤ 0)))
11 ltle 10005 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < 𝐴 → 0 ≤ 𝐴))
122, 11mpan 702 . . . . . . . . . . 11 (𝐴 ∈ ℝ → (0 < 𝐴 → 0 ≤ 𝐴))
1312imp 444 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 ≤ 𝐴)
1413ad2ant2rl 781 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐴)) → 0 ≤ 𝐴)
15 remulcl 9900 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ)
1615adantr 480 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐴)) → (𝐴 · 𝐵) ∈ ℝ)
17 simprl 790 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐴)) → 0 ≤ (𝐴 · 𝐵))
18 simpll 786 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐴)) → 𝐴 ∈ ℝ)
19 simprr 792 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐴)) → 0 < 𝐴)
20 divge0 10771 . . . . . . . . . . 11 ((((𝐴 · 𝐵) ∈ ℝ ∧ 0 ≤ (𝐴 · 𝐵)) ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → 0 ≤ ((𝐴 · 𝐵) / 𝐴))
2116, 17, 18, 19, 20syl22anc 1319 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐴)) → 0 ≤ ((𝐴 · 𝐵) / 𝐴))
22 recn 9905 . . . . . . . . . . . 12 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
2322ad2antlr 759 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐴)) → 𝐵 ∈ ℂ)
24 recn 9905 . . . . . . . . . . . 12 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
2524ad2antrr 758 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐴)) → 𝐴 ∈ ℂ)
26 gt0ne0 10372 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ≠ 0)
2726ad2ant2rl 781 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐴)) → 𝐴 ≠ 0)
2823, 25, 27divcan3d 10685 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐴)) → ((𝐴 · 𝐵) / 𝐴) = 𝐵)
2921, 28breqtrd 4609 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐴)) → 0 ≤ 𝐵)
3014, 29jca 553 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐴)) → (0 ≤ 𝐴 ∧ 0 ≤ 𝐵))
3130expr 641 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 ≤ (𝐴 · 𝐵)) → (0 < 𝐴 → (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)))
3215adantr 480 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐵)) → (𝐴 · 𝐵) ∈ ℝ)
33 simprl 790 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐵)) → 0 ≤ (𝐴 · 𝐵))
34 simplr 788 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐵)) → 𝐵 ∈ ℝ)
35 simprr 792 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐵)) → 0 < 𝐵)
36 divge0 10771 . . . . . . . . . . 11 ((((𝐴 · 𝐵) ∈ ℝ ∧ 0 ≤ (𝐴 · 𝐵)) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 ≤ ((𝐴 · 𝐵) / 𝐵))
3732, 33, 34, 35, 36syl22anc 1319 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐵)) → 0 ≤ ((𝐴 · 𝐵) / 𝐵))
3824ad2antrr 758 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐵)) → 𝐴 ∈ ℂ)
3922ad2antlr 759 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐵)) → 𝐵 ∈ ℂ)
40 gt0ne0 10372 . . . . . . . . . . . 12 ((𝐵 ∈ ℝ ∧ 0 < 𝐵) → 𝐵 ≠ 0)
4140ad2ant2l 778 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐵)) → 𝐵 ≠ 0)
4238, 39, 41divcan4d 10686 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐵)) → ((𝐴 · 𝐵) / 𝐵) = 𝐴)
4337, 42breqtrd 4609 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐵)) → 0 ≤ 𝐴)
44 ltle 10005 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < 𝐵 → 0 ≤ 𝐵))
452, 44mpan 702 . . . . . . . . . . 11 (𝐵 ∈ ℝ → (0 < 𝐵 → 0 ≤ 𝐵))
4645imp 444 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ 0 < 𝐵) → 0 ≤ 𝐵)
4746ad2ant2l 778 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐵)) → 0 ≤ 𝐵)
4843, 47jca 553 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐵)) → (0 ≤ 𝐴 ∧ 0 ≤ 𝐵))
4948expr 641 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 ≤ (𝐴 · 𝐵)) → (0 < 𝐵 → (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)))
5031, 49jaod 394 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 ≤ (𝐴 · 𝐵)) → ((0 < 𝐴 ∨ 0 < 𝐵) → (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)))
5110, 50sylbird 249 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 ≤ (𝐴 · 𝐵)) → ((¬ 𝐴 ≤ 0 ∨ ¬ 𝐵 ≤ 0) → (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)))
521, 51syl5bi 231 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 ≤ (𝐴 · 𝐵)) → (¬ (𝐴 ≤ 0 ∧ 𝐵 ≤ 0) → (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)))
5352orrd 392 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 ≤ (𝐴 · 𝐵)) → ((𝐴 ≤ 0 ∧ 𝐵 ≤ 0) ∨ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)))
5453ex 449 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ (𝐴 · 𝐵) → ((𝐴 ≤ 0 ∧ 𝐵 ≤ 0) ∨ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵))))
55 le0neg1 10415 . . . . 5 (𝐴 ∈ ℝ → (𝐴 ≤ 0 ↔ 0 ≤ -𝐴))
56 le0neg1 10415 . . . . 5 (𝐵 ∈ ℝ → (𝐵 ≤ 0 ↔ 0 ≤ -𝐵))
5755, 56bi2anan9 913 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 ≤ 0 ∧ 𝐵 ≤ 0) ↔ (0 ≤ -𝐴 ∧ 0 ≤ -𝐵)))
58 renegcl 10223 . . . . . 6 (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
59 renegcl 10223 . . . . . 6 (𝐵 ∈ ℝ → -𝐵 ∈ ℝ)
60 mulge0 10425 . . . . . . . 8 (((-𝐴 ∈ ℝ ∧ 0 ≤ -𝐴) ∧ (-𝐵 ∈ ℝ ∧ 0 ≤ -𝐵)) → 0 ≤ (-𝐴 · -𝐵))
6160an4s 865 . . . . . . 7 (((-𝐴 ∈ ℝ ∧ -𝐵 ∈ ℝ) ∧ (0 ≤ -𝐴 ∧ 0 ≤ -𝐵)) → 0 ≤ (-𝐴 · -𝐵))
6261ex 449 . . . . . 6 ((-𝐴 ∈ ℝ ∧ -𝐵 ∈ ℝ) → ((0 ≤ -𝐴 ∧ 0 ≤ -𝐵) → 0 ≤ (-𝐴 · -𝐵)))
6358, 59, 62syl2an 493 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 ≤ -𝐴 ∧ 0 ≤ -𝐵) → 0 ≤ (-𝐴 · -𝐵)))
64 mul2neg 10348 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐴 · -𝐵) = (𝐴 · 𝐵))
6524, 22, 64syl2an 493 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-𝐴 · -𝐵) = (𝐴 · 𝐵))
6665breq2d 4595 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ (-𝐴 · -𝐵) ↔ 0 ≤ (𝐴 · 𝐵)))
6763, 66sylibd 228 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 ≤ -𝐴 ∧ 0 ≤ -𝐵) → 0 ≤ (𝐴 · 𝐵)))
6857, 67sylbid 229 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 ≤ 0 ∧ 𝐵 ≤ 0) → 0 ≤ (𝐴 · 𝐵)))
69 mulge0 10425 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 0 ≤ (𝐴 · 𝐵))
7069an4s 865 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)) → 0 ≤ (𝐴 · 𝐵))
7170ex 449 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 ≤ 𝐴 ∧ 0 ≤ 𝐵) → 0 ≤ (𝐴 · 𝐵)))
7268, 71jaod 394 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐴 ≤ 0 ∧ 𝐵 ≤ 0) ∨ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)) → 0 ≤ (𝐴 · 𝐵)))
7354, 72impbid 201 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ (𝐴 · 𝐵) ↔ ((𝐴 ≤ 0 ∧ 𝐵 ≤ 0) ∨ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383   = wceq 1475  wcel 1977  wne 2780   class class class wbr 4583  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815   · cmul 9820   < clt 9953  cle 9954  -cneg 10146   / cdiv 10563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564
This theorem is referenced by:  mulle0b  10773
  Copyright terms: Public domain W3C validator