MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  muladd Structured version   Visualization version   GIF version

Theorem muladd 10341
Description: Product of two sums. (Contributed by NM, 14-Jan-2006.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
Assertion
Ref Expression
muladd (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐵) · (𝐶 + 𝐷)) = (((𝐴 · 𝐶) + (𝐷 · 𝐵)) + ((𝐴 · 𝐷) + (𝐶 · 𝐵))))

Proof of Theorem muladd
StepHypRef Expression
1 addcl 9897 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ)
2 adddi 9904 . . . 4 (((𝐴 + 𝐵) ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) → ((𝐴 + 𝐵) · (𝐶 + 𝐷)) = (((𝐴 + 𝐵) · 𝐶) + ((𝐴 + 𝐵) · 𝐷)))
323expb 1258 . . 3 (((𝐴 + 𝐵) ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐵) · (𝐶 + 𝐷)) = (((𝐴 + 𝐵) · 𝐶) + ((𝐴 + 𝐵) · 𝐷)))
41, 3sylan 487 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐵) · (𝐶 + 𝐷)) = (((𝐴 + 𝐵) · 𝐶) + ((𝐴 + 𝐵) · 𝐷)))
5 adddir 9910 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) · 𝐶) = ((𝐴 · 𝐶) + (𝐵 · 𝐶)))
653expa 1257 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) · 𝐶) = ((𝐴 · 𝐶) + (𝐵 · 𝐶)))
76adantrr 749 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐵) · 𝐶) = ((𝐴 · 𝐶) + (𝐵 · 𝐶)))
8 adddir 9910 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) → ((𝐴 + 𝐵) · 𝐷) = ((𝐴 · 𝐷) + (𝐵 · 𝐷)))
983expa 1257 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℂ) → ((𝐴 + 𝐵) · 𝐷) = ((𝐴 · 𝐷) + (𝐵 · 𝐷)))
109adantrl 748 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐵) · 𝐷) = ((𝐴 · 𝐷) + (𝐵 · 𝐷)))
117, 10oveq12d 6567 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((𝐴 + 𝐵) · 𝐶) + ((𝐴 + 𝐵) · 𝐷)) = (((𝐴 · 𝐶) + (𝐵 · 𝐶)) + ((𝐴 · 𝐷) + (𝐵 · 𝐷))))
12 mulcl 9899 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · 𝐶) ∈ ℂ)
1312ad2ant2r 779 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐴 · 𝐶) ∈ ℂ)
14 mulcl 9899 . . . . 5 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵 · 𝐶) ∈ ℂ)
1514ad2ant2lr 780 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐵 · 𝐶) ∈ ℂ)
16 mulcl 9899 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐴 · 𝐷) ∈ ℂ)
17 mulcl 9899 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐵 · 𝐷) ∈ ℂ)
18 addcl 9897 . . . . . . 7 (((𝐴 · 𝐷) ∈ ℂ ∧ (𝐵 · 𝐷) ∈ ℂ) → ((𝐴 · 𝐷) + (𝐵 · 𝐷)) ∈ ℂ)
1916, 17, 18syl2an 493 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 · 𝐷) + (𝐵 · 𝐷)) ∈ ℂ)
2019anandirs 870 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℂ) → ((𝐴 · 𝐷) + (𝐵 · 𝐷)) ∈ ℂ)
2120adantrl 748 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 · 𝐷) + (𝐵 · 𝐷)) ∈ ℂ)
2213, 15, 21add32d 10142 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((𝐴 · 𝐶) + (𝐵 · 𝐶)) + ((𝐴 · 𝐷) + (𝐵 · 𝐷))) = (((𝐴 · 𝐶) + ((𝐴 · 𝐷) + (𝐵 · 𝐷))) + (𝐵 · 𝐶)))
23 mulcom 9901 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐵 · 𝐷) = (𝐷 · 𝐵))
2423ad2ant2l 778 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐵 · 𝐷) = (𝐷 · 𝐵))
2524oveq2d 6565 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((𝐴 · 𝐶) + (𝐴 · 𝐷)) + (𝐵 · 𝐷)) = (((𝐴 · 𝐶) + (𝐴 · 𝐷)) + (𝐷 · 𝐵)))
2616ad2ant2rl 781 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐴 · 𝐷) ∈ ℂ)
2717ad2ant2l 778 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐵 · 𝐷) ∈ ℂ)
2813, 26, 27addassd 9941 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((𝐴 · 𝐶) + (𝐴 · 𝐷)) + (𝐵 · 𝐷)) = ((𝐴 · 𝐶) + ((𝐴 · 𝐷) + (𝐵 · 𝐷))))
29 mulcl 9899 . . . . . . . 8 ((𝐷 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐷 · 𝐵) ∈ ℂ)
3029ancoms 468 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐷 · 𝐵) ∈ ℂ)
3130ad2ant2l 778 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐷 · 𝐵) ∈ ℂ)
3213, 26, 31add32d 10142 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((𝐴 · 𝐶) + (𝐴 · 𝐷)) + (𝐷 · 𝐵)) = (((𝐴 · 𝐶) + (𝐷 · 𝐵)) + (𝐴 · 𝐷)))
3325, 28, 323eqtr3d 2652 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 · 𝐶) + ((𝐴 · 𝐷) + (𝐵 · 𝐷))) = (((𝐴 · 𝐶) + (𝐷 · 𝐵)) + (𝐴 · 𝐷)))
34 mulcom 9901 . . . . 5 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵 · 𝐶) = (𝐶 · 𝐵))
3534ad2ant2lr 780 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐵 · 𝐶) = (𝐶 · 𝐵))
3633, 35oveq12d 6567 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((𝐴 · 𝐶) + ((𝐴 · 𝐷) + (𝐵 · 𝐷))) + (𝐵 · 𝐶)) = ((((𝐴 · 𝐶) + (𝐷 · 𝐵)) + (𝐴 · 𝐷)) + (𝐶 · 𝐵)))
37 addcl 9897 . . . . . 6 (((𝐴 · 𝐶) ∈ ℂ ∧ (𝐷 · 𝐵) ∈ ℂ) → ((𝐴 · 𝐶) + (𝐷 · 𝐵)) ∈ ℂ)
3812, 30, 37syl2an 493 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 · 𝐶) + (𝐷 · 𝐵)) ∈ ℂ)
3938an4s 865 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 · 𝐶) + (𝐷 · 𝐵)) ∈ ℂ)
40 mulcl 9899 . . . . . 6 ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐶 · 𝐵) ∈ ℂ)
4140ancoms 468 . . . . 5 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐶 · 𝐵) ∈ ℂ)
4241ad2ant2lr 780 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐶 · 𝐵) ∈ ℂ)
4339, 26, 42addassd 9941 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((((𝐴 · 𝐶) + (𝐷 · 𝐵)) + (𝐴 · 𝐷)) + (𝐶 · 𝐵)) = (((𝐴 · 𝐶) + (𝐷 · 𝐵)) + ((𝐴 · 𝐷) + (𝐶 · 𝐵))))
4422, 36, 433eqtrd 2648 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((𝐴 · 𝐶) + (𝐵 · 𝐶)) + ((𝐴 · 𝐷) + (𝐵 · 𝐷))) = (((𝐴 · 𝐶) + (𝐷 · 𝐵)) + ((𝐴 · 𝐷) + (𝐶 · 𝐵))))
454, 11, 443eqtrd 2648 1 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐵) · (𝐶 + 𝐷)) = (((𝐴 · 𝐶) + (𝐷 · 𝐵)) + ((𝐴 · 𝐷) + (𝐶 · 𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  (class class class)co 6549  cc 9813   + caddc 9818   · cmul 9820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-ltxr 9958
This theorem is referenced by:  mulsub  10352  muladdi  10360  muladdd  10368  sqabsadd  13870  demoivreALT  14770
  Copyright terms: Public domain W3C validator