Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mrieqvd Structured version   Visualization version   GIF version

Theorem mrieqvd 16121
 Description: In a Moore system, a set is independent if and only if, for all elements of the set, the closure of the set with the element removed is unequal to the closure of the original set. Part of Proposition 4.1.3 in [FaureFrolicher] p. 83. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
mrieqvd.1 (𝜑𝐴 ∈ (Moore‘𝑋))
mrieqvd.2 𝑁 = (mrCls‘𝐴)
mrieqvd.3 𝐼 = (mrInd‘𝐴)
mrieqvd.4 (𝜑𝑆𝑋)
Assertion
Ref Expression
mrieqvd (𝜑 → (𝑆𝐼 ↔ ∀𝑥𝑆 (𝑁‘(𝑆 ∖ {𝑥})) ≠ (𝑁𝑆)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑆   𝜑,𝑥
Allowed substitution hints:   𝐼(𝑥)   𝑁(𝑥)   𝑋(𝑥)

Proof of Theorem mrieqvd
StepHypRef Expression
1 mrieqvd.2 . . 3 𝑁 = (mrCls‘𝐴)
2 mrieqvd.3 . . 3 𝐼 = (mrInd‘𝐴)
3 mrieqvd.1 . . 3 (𝜑𝐴 ∈ (Moore‘𝑋))
4 mrieqvd.4 . . 3 (𝜑𝑆𝑋)
51, 2, 3, 4ismri2d 16116 . 2 (𝜑 → (𝑆𝐼 ↔ ∀𝑥𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))))
63adantr 480 . . . . 5 ((𝜑𝑥𝑆) → 𝐴 ∈ (Moore‘𝑋))
74adantr 480 . . . . 5 ((𝜑𝑥𝑆) → 𝑆𝑋)
8 simpr 476 . . . . 5 ((𝜑𝑥𝑆) → 𝑥𝑆)
96, 1, 7, 8mrieqvlemd 16112 . . . 4 ((𝜑𝑥𝑆) → (𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})) ↔ (𝑁‘(𝑆 ∖ {𝑥})) = (𝑁𝑆)))
109necon3bbid 2819 . . 3 ((𝜑𝑥𝑆) → (¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})) ↔ (𝑁‘(𝑆 ∖ {𝑥})) ≠ (𝑁𝑆)))
1110ralbidva 2968 . 2 (𝜑 → (∀𝑥𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})) ↔ ∀𝑥𝑆 (𝑁‘(𝑆 ∖ {𝑥})) ≠ (𝑁𝑆)))
125, 11bitrd 267 1 (𝜑 → (𝑆𝐼 ↔ ∀𝑥𝑆 (𝑁‘(𝑆 ∖ {𝑥})) ≠ (𝑁𝑆)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 195   ∧ wa 383   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ∀wral 2896   ∖ cdif 3537   ⊆ wss 3540  {csn 4125  ‘cfv 5804  Moorecmre 16065  mrClscmrc 16066  mrIndcmri 16067 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-int 4411  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-fv 5812  df-mre 16069  df-mrc 16070  df-mri 16071 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator