MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mreiincl Structured version   Visualization version   GIF version

Theorem mreiincl 16079
Description: A nonempty indexed intersection of closed sets is closed. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Assertion
Ref Expression
mreiincl ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐼 ≠ ∅ ∧ ∀𝑦𝐼 𝑆𝐶) → 𝑦𝐼 𝑆𝐶)
Distinct variable groups:   𝑦,𝐼   𝑦,𝑋   𝑦,𝐶
Allowed substitution hint:   𝑆(𝑦)

Proof of Theorem mreiincl
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 dfiin2g 4489 . . 3 (∀𝑦𝐼 𝑆𝐶 𝑦𝐼 𝑆 = {𝑠 ∣ ∃𝑦𝐼 𝑠 = 𝑆})
213ad2ant3 1077 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐼 ≠ ∅ ∧ ∀𝑦𝐼 𝑆𝐶) → 𝑦𝐼 𝑆 = {𝑠 ∣ ∃𝑦𝐼 𝑠 = 𝑆})
3 simp1 1054 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐼 ≠ ∅ ∧ ∀𝑦𝐼 𝑆𝐶) → 𝐶 ∈ (Moore‘𝑋))
4 uniiunlem 3653 . . . . 5 (∀𝑦𝐼 𝑆𝐶 → (∀𝑦𝐼 𝑆𝐶 ↔ {𝑠 ∣ ∃𝑦𝐼 𝑠 = 𝑆} ⊆ 𝐶))
54ibi 255 . . . 4 (∀𝑦𝐼 𝑆𝐶 → {𝑠 ∣ ∃𝑦𝐼 𝑠 = 𝑆} ⊆ 𝐶)
653ad2ant3 1077 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐼 ≠ ∅ ∧ ∀𝑦𝐼 𝑆𝐶) → {𝑠 ∣ ∃𝑦𝐼 𝑠 = 𝑆} ⊆ 𝐶)
7 n0 3890 . . . . . 6 (𝐼 ≠ ∅ ↔ ∃𝑦 𝑦𝐼)
8 nfra1 2925 . . . . . . . 8 𝑦𝑦𝐼 𝑆𝐶
9 nfre1 2988 . . . . . . . . . 10 𝑦𝑦𝐼 𝑠 = 𝑆
109nfab 2755 . . . . . . . . 9 𝑦{𝑠 ∣ ∃𝑦𝐼 𝑠 = 𝑆}
11 nfcv 2751 . . . . . . . . 9 𝑦
1210, 11nfne 2882 . . . . . . . 8 𝑦{𝑠 ∣ ∃𝑦𝐼 𝑠 = 𝑆} ≠ ∅
138, 12nfim 1813 . . . . . . 7 𝑦(∀𝑦𝐼 𝑆𝐶 → {𝑠 ∣ ∃𝑦𝐼 𝑠 = 𝑆} ≠ ∅)
14 rsp 2913 . . . . . . . . . 10 (∀𝑦𝐼 𝑆𝐶 → (𝑦𝐼𝑆𝐶))
1514com12 32 . . . . . . . . 9 (𝑦𝐼 → (∀𝑦𝐼 𝑆𝐶𝑆𝐶))
16 elisset 3188 . . . . . . . . . . 11 (𝑆𝐶 → ∃𝑠 𝑠 = 𝑆)
17 rspe 2986 . . . . . . . . . . . 12 ((𝑦𝐼 ∧ ∃𝑠 𝑠 = 𝑆) → ∃𝑦𝐼𝑠 𝑠 = 𝑆)
1817ex 449 . . . . . . . . . . 11 (𝑦𝐼 → (∃𝑠 𝑠 = 𝑆 → ∃𝑦𝐼𝑠 𝑠 = 𝑆))
1916, 18syl5 33 . . . . . . . . . 10 (𝑦𝐼 → (𝑆𝐶 → ∃𝑦𝐼𝑠 𝑠 = 𝑆))
20 rexcom4 3198 . . . . . . . . . 10 (∃𝑦𝐼𝑠 𝑠 = 𝑆 ↔ ∃𝑠𝑦𝐼 𝑠 = 𝑆)
2119, 20syl6ib 240 . . . . . . . . 9 (𝑦𝐼 → (𝑆𝐶 → ∃𝑠𝑦𝐼 𝑠 = 𝑆))
2215, 21syld 46 . . . . . . . 8 (𝑦𝐼 → (∀𝑦𝐼 𝑆𝐶 → ∃𝑠𝑦𝐼 𝑠 = 𝑆))
23 abn0 3908 . . . . . . . 8 ({𝑠 ∣ ∃𝑦𝐼 𝑠 = 𝑆} ≠ ∅ ↔ ∃𝑠𝑦𝐼 𝑠 = 𝑆)
2422, 23syl6ibr 241 . . . . . . 7 (𝑦𝐼 → (∀𝑦𝐼 𝑆𝐶 → {𝑠 ∣ ∃𝑦𝐼 𝑠 = 𝑆} ≠ ∅))
2513, 24exlimi 2073 . . . . . 6 (∃𝑦 𝑦𝐼 → (∀𝑦𝐼 𝑆𝐶 → {𝑠 ∣ ∃𝑦𝐼 𝑠 = 𝑆} ≠ ∅))
267, 25sylbi 206 . . . . 5 (𝐼 ≠ ∅ → (∀𝑦𝐼 𝑆𝐶 → {𝑠 ∣ ∃𝑦𝐼 𝑠 = 𝑆} ≠ ∅))
2726imp 444 . . . 4 ((𝐼 ≠ ∅ ∧ ∀𝑦𝐼 𝑆𝐶) → {𝑠 ∣ ∃𝑦𝐼 𝑠 = 𝑆} ≠ ∅)
28273adant1 1072 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐼 ≠ ∅ ∧ ∀𝑦𝐼 𝑆𝐶) → {𝑠 ∣ ∃𝑦𝐼 𝑠 = 𝑆} ≠ ∅)
29 mreintcl 16078 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ {𝑠 ∣ ∃𝑦𝐼 𝑠 = 𝑆} ⊆ 𝐶 ∧ {𝑠 ∣ ∃𝑦𝐼 𝑠 = 𝑆} ≠ ∅) → {𝑠 ∣ ∃𝑦𝐼 𝑠 = 𝑆} ∈ 𝐶)
303, 6, 28, 29syl3anc 1318 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐼 ≠ ∅ ∧ ∀𝑦𝐼 𝑆𝐶) → {𝑠 ∣ ∃𝑦𝐼 𝑠 = 𝑆} ∈ 𝐶)
312, 30eqeltrd 2688 1 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐼 ≠ ∅ ∧ ∀𝑦𝐼 𝑆𝐶) → 𝑦𝐼 𝑆𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1031   = wceq 1475  wex 1695  wcel 1977  {cab 2596  wne 2780  wral 2896  wrex 2897  wss 3540  c0 3874   cint 4410   ciin 4456  cfv 5804  Moorecmre 16065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-int 4411  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-iota 5768  df-fun 5806  df-fv 5812  df-mre 16069
This theorem is referenced by:  mreriincl  16081  mretopd  20706
  Copyright terms: Public domain W3C validator