Proof of Theorem mreexd
Step | Hyp | Ref
| Expression |
1 | | mreexd.2 |
. 2
⊢ (𝜑 → ∀𝑠 ∈ 𝒫 𝑋∀𝑦 ∈ 𝑋 ∀𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧}))) |
2 | | mreexd.3 |
. . . 4
⊢ (𝜑 → 𝑆 ⊆ 𝑋) |
3 | | mreexd.1 |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ 𝑉) |
4 | | elpw2g 4754 |
. . . . 5
⊢ (𝑋 ∈ 𝑉 → (𝑆 ∈ 𝒫 𝑋 ↔ 𝑆 ⊆ 𝑋)) |
5 | 3, 4 | syl 17 |
. . . 4
⊢ (𝜑 → (𝑆 ∈ 𝒫 𝑋 ↔ 𝑆 ⊆ 𝑋)) |
6 | 2, 5 | mpbird 246 |
. . 3
⊢ (𝜑 → 𝑆 ∈ 𝒫 𝑋) |
7 | | mreexd.4 |
. . . . 5
⊢ (𝜑 → 𝑌 ∈ 𝑋) |
8 | 7 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑠 = 𝑆) → 𝑌 ∈ 𝑋) |
9 | | mreexd.5 |
. . . . . . . 8
⊢ (𝜑 → 𝑍 ∈ (𝑁‘(𝑆 ∪ {𝑌}))) |
10 | 9 | ad2antrr 758 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑦 = 𝑌) → 𝑍 ∈ (𝑁‘(𝑆 ∪ {𝑌}))) |
11 | | simplr 788 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑦 = 𝑌) → 𝑠 = 𝑆) |
12 | | simpr 476 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑦 = 𝑌) → 𝑦 = 𝑌) |
13 | 12 | sneqd 4137 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑦 = 𝑌) → {𝑦} = {𝑌}) |
14 | 11, 13 | uneq12d 3730 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑦 = 𝑌) → (𝑠 ∪ {𝑦}) = (𝑆 ∪ {𝑌})) |
15 | 14 | fveq2d 6107 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑦 = 𝑌) → (𝑁‘(𝑠 ∪ {𝑦})) = (𝑁‘(𝑆 ∪ {𝑌}))) |
16 | 10, 15 | eleqtrrd 2691 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑦 = 𝑌) → 𝑍 ∈ (𝑁‘(𝑠 ∪ {𝑦}))) |
17 | | mreexd.6 |
. . . . . . . 8
⊢ (𝜑 → ¬ 𝑍 ∈ (𝑁‘𝑆)) |
18 | 17 | ad2antrr 758 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑦 = 𝑌) → ¬ 𝑍 ∈ (𝑁‘𝑆)) |
19 | 11 | fveq2d 6107 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑦 = 𝑌) → (𝑁‘𝑠) = (𝑁‘𝑆)) |
20 | 18, 19 | neleqtrrd 2710 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑦 = 𝑌) → ¬ 𝑍 ∈ (𝑁‘𝑠)) |
21 | 16, 20 | eldifd 3551 |
. . . . 5
⊢ (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑦 = 𝑌) → 𝑍 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))) |
22 | | simplr 788 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) → 𝑦 = 𝑌) |
23 | | simpllr 795 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) → 𝑠 = 𝑆) |
24 | | simpr 476 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) → 𝑧 = 𝑍) |
25 | 24 | sneqd 4137 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) → {𝑧} = {𝑍}) |
26 | 23, 25 | uneq12d 3730 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) → (𝑠 ∪ {𝑧}) = (𝑆 ∪ {𝑍})) |
27 | 26 | fveq2d 6107 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) → (𝑁‘(𝑠 ∪ {𝑧})) = (𝑁‘(𝑆 ∪ {𝑍}))) |
28 | 22, 27 | eleq12d 2682 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑦 = 𝑌) ∧ 𝑧 = 𝑍) → (𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧})) ↔ 𝑌 ∈ (𝑁‘(𝑆 ∪ {𝑍})))) |
29 | 21, 28 | rspcdv 3285 |
. . . 4
⊢ (((𝜑 ∧ 𝑠 = 𝑆) ∧ 𝑦 = 𝑌) → (∀𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧})) → 𝑌 ∈ (𝑁‘(𝑆 ∪ {𝑍})))) |
30 | 8, 29 | rspcimdv 3283 |
. . 3
⊢ ((𝜑 ∧ 𝑠 = 𝑆) → (∀𝑦 ∈ 𝑋 ∀𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧})) → 𝑌 ∈ (𝑁‘(𝑆 ∪ {𝑍})))) |
31 | 6, 30 | rspcimdv 3283 |
. 2
⊢ (𝜑 → (∀𝑠 ∈ 𝒫 𝑋∀𝑦 ∈ 𝑋 ∀𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧})) → 𝑌 ∈ (𝑁‘(𝑆 ∪ {𝑍})))) |
32 | 1, 31 | mpd 15 |
1
⊢ (𝜑 → 𝑌 ∈ (𝑁‘(𝑆 ∪ {𝑍}))) |