MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mrcuni Structured version   Visualization version   GIF version

Theorem mrcuni 16104
Description: Idempotence of closure under a general union. (Contributed by Stefan O'Rear, 31-Jan-2015.)
Hypothesis
Ref Expression
mrcfval.f 𝐹 = (mrCls‘𝐶)
Assertion
Ref Expression
mrcuni ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → (𝐹 𝑈) = (𝐹 (𝐹𝑈)))

Proof of Theorem mrcuni
Dummy variables 𝑥 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 472 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → 𝐶 ∈ (Moore‘𝑋))
2 simpll 786 . . . . . . 7 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) ∧ 𝑠𝑈) → 𝐶 ∈ (Moore‘𝑋))
3 ssel2 3563 . . . . . . . . 9 ((𝑈 ⊆ 𝒫 𝑋𝑠𝑈) → 𝑠 ∈ 𝒫 𝑋)
43elpwid 4118 . . . . . . . 8 ((𝑈 ⊆ 𝒫 𝑋𝑠𝑈) → 𝑠𝑋)
54adantll 746 . . . . . . 7 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) ∧ 𝑠𝑈) → 𝑠𝑋)
6 mrcfval.f . . . . . . . 8 𝐹 = (mrCls‘𝐶)
76mrcssid 16100 . . . . . . 7 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑠𝑋) → 𝑠 ⊆ (𝐹𝑠))
82, 5, 7syl2anc 691 . . . . . 6 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) ∧ 𝑠𝑈) → 𝑠 ⊆ (𝐹𝑠))
96mrcf 16092 . . . . . . . . . . 11 (𝐶 ∈ (Moore‘𝑋) → 𝐹:𝒫 𝑋𝐶)
10 ffun 5961 . . . . . . . . . . 11 (𝐹:𝒫 𝑋𝐶 → Fun 𝐹)
119, 10syl 17 . . . . . . . . . 10 (𝐶 ∈ (Moore‘𝑋) → Fun 𝐹)
1211adantr 480 . . . . . . . . 9 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → Fun 𝐹)
13 fdm 5964 . . . . . . . . . . . 12 (𝐹:𝒫 𝑋𝐶 → dom 𝐹 = 𝒫 𝑋)
149, 13syl 17 . . . . . . . . . . 11 (𝐶 ∈ (Moore‘𝑋) → dom 𝐹 = 𝒫 𝑋)
1514sseq2d 3596 . . . . . . . . . 10 (𝐶 ∈ (Moore‘𝑋) → (𝑈 ⊆ dom 𝐹𝑈 ⊆ 𝒫 𝑋))
1615biimpar 501 . . . . . . . . 9 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → 𝑈 ⊆ dom 𝐹)
17 funfvima2 6397 . . . . . . . . 9 ((Fun 𝐹𝑈 ⊆ dom 𝐹) → (𝑠𝑈 → (𝐹𝑠) ∈ (𝐹𝑈)))
1812, 16, 17syl2anc 691 . . . . . . . 8 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → (𝑠𝑈 → (𝐹𝑠) ∈ (𝐹𝑈)))
1918imp 444 . . . . . . 7 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) ∧ 𝑠𝑈) → (𝐹𝑠) ∈ (𝐹𝑈))
20 elssuni 4403 . . . . . . 7 ((𝐹𝑠) ∈ (𝐹𝑈) → (𝐹𝑠) ⊆ (𝐹𝑈))
2119, 20syl 17 . . . . . 6 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) ∧ 𝑠𝑈) → (𝐹𝑠) ⊆ (𝐹𝑈))
228, 21sstrd 3578 . . . . 5 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) ∧ 𝑠𝑈) → 𝑠 (𝐹𝑈))
2322ralrimiva 2949 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → ∀𝑠𝑈 𝑠 (𝐹𝑈))
24 unissb 4405 . . . 4 ( 𝑈 (𝐹𝑈) ↔ ∀𝑠𝑈 𝑠 (𝐹𝑈))
2523, 24sylibr 223 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → 𝑈 (𝐹𝑈))
266mrcssv 16097 . . . . . . 7 (𝐶 ∈ (Moore‘𝑋) → (𝐹𝑥) ⊆ 𝑋)
2726adantr 480 . . . . . 6 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → (𝐹𝑥) ⊆ 𝑋)
2827ralrimivw 2950 . . . . 5 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → ∀𝑥𝑈 (𝐹𝑥) ⊆ 𝑋)
29 ffn 5958 . . . . . . 7 (𝐹:𝒫 𝑋𝐶𝐹 Fn 𝒫 𝑋)
309, 29syl 17 . . . . . 6 (𝐶 ∈ (Moore‘𝑋) → 𝐹 Fn 𝒫 𝑋)
31 sseq1 3589 . . . . . . 7 (𝑠 = (𝐹𝑥) → (𝑠𝑋 ↔ (𝐹𝑥) ⊆ 𝑋))
3231ralima 6402 . . . . . 6 ((𝐹 Fn 𝒫 𝑋𝑈 ⊆ 𝒫 𝑋) → (∀𝑠 ∈ (𝐹𝑈)𝑠𝑋 ↔ ∀𝑥𝑈 (𝐹𝑥) ⊆ 𝑋))
3330, 32sylan 487 . . . . 5 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → (∀𝑠 ∈ (𝐹𝑈)𝑠𝑋 ↔ ∀𝑥𝑈 (𝐹𝑥) ⊆ 𝑋))
3428, 33mpbird 246 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → ∀𝑠 ∈ (𝐹𝑈)𝑠𝑋)
35 unissb 4405 . . . 4 ( (𝐹𝑈) ⊆ 𝑋 ↔ ∀𝑠 ∈ (𝐹𝑈)𝑠𝑋)
3634, 35sylibr 223 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → (𝐹𝑈) ⊆ 𝑋)
376mrcss 16099 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 (𝐹𝑈) ∧ (𝐹𝑈) ⊆ 𝑋) → (𝐹 𝑈) ⊆ (𝐹 (𝐹𝑈)))
381, 25, 36, 37syl3anc 1318 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → (𝐹 𝑈) ⊆ (𝐹 (𝐹𝑈)))
39 simpll 786 . . . . . . . 8 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) ∧ 𝑥𝑈) → 𝐶 ∈ (Moore‘𝑋))
40 elssuni 4403 . . . . . . . . 9 (𝑥𝑈𝑥 𝑈)
4140adantl 481 . . . . . . . 8 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) ∧ 𝑥𝑈) → 𝑥 𝑈)
42 sspwuni 4547 . . . . . . . . . . 11 (𝑈 ⊆ 𝒫 𝑋 𝑈𝑋)
4342biimpi 205 . . . . . . . . . 10 (𝑈 ⊆ 𝒫 𝑋 𝑈𝑋)
4443adantl 481 . . . . . . . . 9 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → 𝑈𝑋)
4544adantr 480 . . . . . . . 8 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) ∧ 𝑥𝑈) → 𝑈𝑋)
466mrcss 16099 . . . . . . . 8 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 𝑈 𝑈𝑋) → (𝐹𝑥) ⊆ (𝐹 𝑈))
4739, 41, 45, 46syl3anc 1318 . . . . . . 7 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) ∧ 𝑥𝑈) → (𝐹𝑥) ⊆ (𝐹 𝑈))
4847ralrimiva 2949 . . . . . 6 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → ∀𝑥𝑈 (𝐹𝑥) ⊆ (𝐹 𝑈))
49 sseq1 3589 . . . . . . . 8 (𝑠 = (𝐹𝑥) → (𝑠 ⊆ (𝐹 𝑈) ↔ (𝐹𝑥) ⊆ (𝐹 𝑈)))
5049ralima 6402 . . . . . . 7 ((𝐹 Fn 𝒫 𝑋𝑈 ⊆ 𝒫 𝑋) → (∀𝑠 ∈ (𝐹𝑈)𝑠 ⊆ (𝐹 𝑈) ↔ ∀𝑥𝑈 (𝐹𝑥) ⊆ (𝐹 𝑈)))
5130, 50sylan 487 . . . . . 6 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → (∀𝑠 ∈ (𝐹𝑈)𝑠 ⊆ (𝐹 𝑈) ↔ ∀𝑥𝑈 (𝐹𝑥) ⊆ (𝐹 𝑈)))
5248, 51mpbird 246 . . . . 5 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → ∀𝑠 ∈ (𝐹𝑈)𝑠 ⊆ (𝐹 𝑈))
53 unissb 4405 . . . . 5 ( (𝐹𝑈) ⊆ (𝐹 𝑈) ↔ ∀𝑠 ∈ (𝐹𝑈)𝑠 ⊆ (𝐹 𝑈))
5452, 53sylibr 223 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → (𝐹𝑈) ⊆ (𝐹 𝑈))
556mrcssv 16097 . . . . 5 (𝐶 ∈ (Moore‘𝑋) → (𝐹 𝑈) ⊆ 𝑋)
5655adantr 480 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → (𝐹 𝑈) ⊆ 𝑋)
576mrcss 16099 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ (𝐹𝑈) ⊆ (𝐹 𝑈) ∧ (𝐹 𝑈) ⊆ 𝑋) → (𝐹 (𝐹𝑈)) ⊆ (𝐹‘(𝐹 𝑈)))
581, 54, 56, 57syl3anc 1318 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → (𝐹 (𝐹𝑈)) ⊆ (𝐹‘(𝐹 𝑈)))
596mrcidm 16102 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋) → (𝐹‘(𝐹 𝑈)) = (𝐹 𝑈))
601, 44, 59syl2anc 691 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → (𝐹‘(𝐹 𝑈)) = (𝐹 𝑈))
6158, 60sseqtrd 3604 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → (𝐹 (𝐹𝑈)) ⊆ (𝐹 𝑈))
6238, 61eqssd 3585 1 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝒫 𝑋) → (𝐹 𝑈) = (𝐹 (𝐹𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wral 2896  wss 3540  𝒫 cpw 4108   cuni 4372  dom cdm 5038  cima 5041  Fun wfun 5798   Fn wfn 5799  wf 5800  cfv 5804  Moorecmre 16065  mrClscmrc 16066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-int 4411  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-fv 5812  df-mre 16069  df-mrc 16070
This theorem is referenced by:  mrcun  16105  isacs4lem  16991
  Copyright terms: Public domain W3C validator