MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mptfnf Structured version   Visualization version   GIF version

Theorem mptfnf 5928
Description: The maps-to notation defines a function with domain. (Contributed by Scott Fenton, 21-Mar-2011.) (Revised by Thierry Arnoux, 10-May-2017.)
Hypothesis
Ref Expression
mptfnf.0 𝑥𝐴
Assertion
Ref Expression
mptfnf (∀𝑥𝐴 𝐵 ∈ V ↔ (𝑥𝐴𝐵) Fn 𝐴)

Proof of Theorem mptfnf
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eueq 3345 . . 3 (𝐵 ∈ V ↔ ∃!𝑦 𝑦 = 𝐵)
21ralbii 2963 . 2 (∀𝑥𝐴 𝐵 ∈ V ↔ ∀𝑥𝐴 ∃!𝑦 𝑦 = 𝐵)
3 r19.26 3046 . . 3 (∀𝑥𝐴 (∃𝑦 𝑦 = 𝐵 ∧ ∃*𝑦 𝑦 = 𝐵) ↔ (∀𝑥𝐴𝑦 𝑦 = 𝐵 ∧ ∀𝑥𝐴 ∃*𝑦 𝑦 = 𝐵))
4 eu5 2484 . . . 4 (∃!𝑦 𝑦 = 𝐵 ↔ (∃𝑦 𝑦 = 𝐵 ∧ ∃*𝑦 𝑦 = 𝐵))
54ralbii 2963 . . 3 (∀𝑥𝐴 ∃!𝑦 𝑦 = 𝐵 ↔ ∀𝑥𝐴 (∃𝑦 𝑦 = 𝐵 ∧ ∃*𝑦 𝑦 = 𝐵))
6 df-mpt 4645 . . . . . 6 (𝑥𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)}
76fneq1i 5899 . . . . 5 ((𝑥𝐴𝐵) Fn 𝐴 ↔ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)} Fn 𝐴)
8 df-fn 5807 . . . . 5 ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)} Fn 𝐴 ↔ (Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)} ∧ dom {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)} = 𝐴))
97, 8bitri 263 . . . 4 ((𝑥𝐴𝐵) Fn 𝐴 ↔ (Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)} ∧ dom {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)} = 𝐴))
10 moanimv 2519 . . . . . . 7 (∃*𝑦(𝑥𝐴𝑦 = 𝐵) ↔ (𝑥𝐴 → ∃*𝑦 𝑦 = 𝐵))
1110albii 1737 . . . . . 6 (∀𝑥∃*𝑦(𝑥𝐴𝑦 = 𝐵) ↔ ∀𝑥(𝑥𝐴 → ∃*𝑦 𝑦 = 𝐵))
12 funopab 5837 . . . . . 6 (Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)} ↔ ∀𝑥∃*𝑦(𝑥𝐴𝑦 = 𝐵))
13 df-ral 2901 . . . . . 6 (∀𝑥𝐴 ∃*𝑦 𝑦 = 𝐵 ↔ ∀𝑥(𝑥𝐴 → ∃*𝑦 𝑦 = 𝐵))
1411, 12, 133bitr4ri 292 . . . . 5 (∀𝑥𝐴 ∃*𝑦 𝑦 = 𝐵 ↔ Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)})
15 eqcom 2617 . . . . . 6 ({𝑥 ∣ (𝑥𝐴 ∧ ∃𝑦 𝑦 = 𝐵)} = 𝐴𝐴 = {𝑥 ∣ (𝑥𝐴 ∧ ∃𝑦 𝑦 = 𝐵)})
16 dmopab 5257 . . . . . . . 8 dom {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)} = {𝑥 ∣ ∃𝑦(𝑥𝐴𝑦 = 𝐵)}
17 19.42v 1905 . . . . . . . . 9 (∃𝑦(𝑥𝐴𝑦 = 𝐵) ↔ (𝑥𝐴 ∧ ∃𝑦 𝑦 = 𝐵))
1817abbii 2726 . . . . . . . 8 {𝑥 ∣ ∃𝑦(𝑥𝐴𝑦 = 𝐵)} = {𝑥 ∣ (𝑥𝐴 ∧ ∃𝑦 𝑦 = 𝐵)}
1916, 18eqtri 2632 . . . . . . 7 dom {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)} = {𝑥 ∣ (𝑥𝐴 ∧ ∃𝑦 𝑦 = 𝐵)}
2019eqeq1i 2615 . . . . . 6 (dom {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)} = 𝐴 ↔ {𝑥 ∣ (𝑥𝐴 ∧ ∃𝑦 𝑦 = 𝐵)} = 𝐴)
21 pm4.71 660 . . . . . . . 8 ((𝑥𝐴 → ∃𝑦 𝑦 = 𝐵) ↔ (𝑥𝐴 ↔ (𝑥𝐴 ∧ ∃𝑦 𝑦 = 𝐵)))
2221albii 1737 . . . . . . 7 (∀𝑥(𝑥𝐴 → ∃𝑦 𝑦 = 𝐵) ↔ ∀𝑥(𝑥𝐴 ↔ (𝑥𝐴 ∧ ∃𝑦 𝑦 = 𝐵)))
23 df-ral 2901 . . . . . . 7 (∀𝑥𝐴𝑦 𝑦 = 𝐵 ↔ ∀𝑥(𝑥𝐴 → ∃𝑦 𝑦 = 𝐵))
24 mptfnf.0 . . . . . . . 8 𝑥𝐴
2524abeq2f 2778 . . . . . . 7 (𝐴 = {𝑥 ∣ (𝑥𝐴 ∧ ∃𝑦 𝑦 = 𝐵)} ↔ ∀𝑥(𝑥𝐴 ↔ (𝑥𝐴 ∧ ∃𝑦 𝑦 = 𝐵)))
2622, 23, 253bitr4i 291 . . . . . 6 (∀𝑥𝐴𝑦 𝑦 = 𝐵𝐴 = {𝑥 ∣ (𝑥𝐴 ∧ ∃𝑦 𝑦 = 𝐵)})
2715, 20, 263bitr4ri 292 . . . . 5 (∀𝑥𝐴𝑦 𝑦 = 𝐵 ↔ dom {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)} = 𝐴)
2814, 27anbi12i 729 . . . 4 ((∀𝑥𝐴 ∃*𝑦 𝑦 = 𝐵 ∧ ∀𝑥𝐴𝑦 𝑦 = 𝐵) ↔ (Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)} ∧ dom {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)} = 𝐴))
29 ancom 465 . . . 4 ((∀𝑥𝐴 ∃*𝑦 𝑦 = 𝐵 ∧ ∀𝑥𝐴𝑦 𝑦 = 𝐵) ↔ (∀𝑥𝐴𝑦 𝑦 = 𝐵 ∧ ∀𝑥𝐴 ∃*𝑦 𝑦 = 𝐵))
309, 28, 293bitr2i 287 . . 3 ((𝑥𝐴𝐵) Fn 𝐴 ↔ (∀𝑥𝐴𝑦 𝑦 = 𝐵 ∧ ∀𝑥𝐴 ∃*𝑦 𝑦 = 𝐵))
313, 5, 303bitr4ri 292 . 2 ((𝑥𝐴𝐵) Fn 𝐴 ↔ ∀𝑥𝐴 ∃!𝑦 𝑦 = 𝐵)
322, 31bitr4i 266 1 (∀𝑥𝐴 𝐵 ∈ V ↔ (𝑥𝐴𝐵) Fn 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  wal 1473   = wceq 1475  wex 1695  wcel 1977  ∃!weu 2458  ∃*wmo 2459  {cab 2596  wnfc 2738  wral 2896  Vcvv 3173  {copab 4642  cmpt 4643  dom cdm 5038  Fun wfun 5798   Fn wfn 5799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-fun 5806  df-fn 5807
This theorem is referenced by:  fnmptf  5929
  Copyright terms: Public domain W3C validator