Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mptex2 | Structured version Visualization version GIF version |
Description: If a class given as a map-to notation is a set, it's image values are set. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
mptex2.1 | ⊢ (𝜑 → (𝑡 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶) |
Ref | Expression |
---|---|
mptex2 | ⊢ ((𝜑 ∧ 𝑡 ∈ 𝐴) → 𝐵 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mptex2.1 | . . 3 ⊢ (𝜑 → (𝑡 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶) | |
2 | eqid 2610 | . . . 4 ⊢ (𝑡 ∈ 𝐴 ↦ 𝐵) = (𝑡 ∈ 𝐴 ↦ 𝐵) | |
3 | 2 | fmpt 6289 | . . 3 ⊢ (∀𝑡 ∈ 𝐴 𝐵 ∈ 𝐶 ↔ (𝑡 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶) |
4 | 1, 3 | sylibr 223 | . 2 ⊢ (𝜑 → ∀𝑡 ∈ 𝐴 𝐵 ∈ 𝐶) |
5 | 4 | r19.21bi 2916 | 1 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝐴) → 𝐵 ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∈ wcel 1977 ∀wral 2896 ↦ cmpt 4643 ⟶wf 5800 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pr 4833 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-fv 5812 |
This theorem is referenced by: cncfcompt 38768 divcncf 38769 cncficcgt0 38774 cncfcompt2 38785 itgsubsticclem 38867 sge0iunmptlemre 39308 hoicvrrex 39446 smfadd 39651 |
Copyright terms: Public domain | W3C validator |