MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mptcoe1matfsupp Structured version   Visualization version   GIF version

Theorem mptcoe1matfsupp 20426
Description: The mapping extracting the entries of the coefficient matrices of a polynomial over matrices at a fixed position is finitely supported. (Contributed by AV, 6-Oct-2019.) (Proof shortened by AV, 23-Dec-2019.)
Hypotheses
Ref Expression
mptcoe1matfsupp.a 𝐴 = (𝑁 Mat 𝑅)
mptcoe1matfsupp.q 𝑄 = (Poly1𝐴)
mptcoe1matfsupp.l 𝐿 = (Base‘𝑄)
Assertion
Ref Expression
mptcoe1matfsupp (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) → (𝑘 ∈ ℕ0 ↦ (𝐼((coe1𝑂)‘𝑘)𝐽)) finSupp (0g𝑅))
Distinct variable groups:   𝑘,𝐿   𝑘,𝐼   𝑘,𝐽   𝑘,𝑁   𝑘,𝑂   𝑅,𝑘
Allowed substitution hints:   𝐴(𝑘)   𝑄(𝑘)

Proof of Theorem mptcoe1matfsupp
Dummy variables 𝑐 𝑠 𝑥 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6113 . . 3 (0g𝑅) ∈ V
21a1i 11 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) → (0g𝑅) ∈ V)
3 mptcoe1matfsupp.a . . 3 𝐴 = (𝑁 Mat 𝑅)
4 eqid 2610 . . 3 (Base‘𝑅) = (Base‘𝑅)
5 eqid 2610 . . 3 (Base‘𝐴) = (Base‘𝐴)
6 simp2 1055 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) → 𝐼𝑁)
76adantr 480 . . 3 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) ∧ 𝑘 ∈ ℕ0) → 𝐼𝑁)
8 simp3 1056 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) → 𝐽𝑁)
98adantr 480 . . 3 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) ∧ 𝑘 ∈ ℕ0) → 𝐽𝑁)
10 simp3 1056 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → 𝑂𝐿)
11103ad2ant1 1075 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) → 𝑂𝐿)
12 eqid 2610 . . . . 5 (coe1𝑂) = (coe1𝑂)
13 mptcoe1matfsupp.l . . . . 5 𝐿 = (Base‘𝑄)
14 mptcoe1matfsupp.q . . . . 5 𝑄 = (Poly1𝐴)
1512, 13, 14, 5coe1fvalcl 19403 . . . 4 ((𝑂𝐿𝑘 ∈ ℕ0) → ((coe1𝑂)‘𝑘) ∈ (Base‘𝐴))
1611, 15sylan 487 . . 3 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) ∧ 𝑘 ∈ ℕ0) → ((coe1𝑂)‘𝑘) ∈ (Base‘𝐴))
173, 4, 5, 7, 9, 16matecld 20051 . 2 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) ∧ 𝑘 ∈ ℕ0) → (𝐼((coe1𝑂)‘𝑘)𝐽) ∈ (Base‘𝑅))
18 eqid 2610 . . . . . . 7 (0g𝐴) = (0g𝐴)
1912, 13, 14, 18, 5coe1fsupp 19405 . . . . . 6 (𝑂𝐿 → (coe1𝑂) ∈ {𝑐 ∈ ((Base‘𝐴) ↑𝑚0) ∣ 𝑐 finSupp (0g𝐴)})
20 elrabi 3328 . . . . . 6 ((coe1𝑂) ∈ {𝑐 ∈ ((Base‘𝐴) ↑𝑚0) ∣ 𝑐 finSupp (0g𝐴)} → (coe1𝑂) ∈ ((Base‘𝐴) ↑𝑚0))
2111, 19, 203syl 18 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) → (coe1𝑂) ∈ ((Base‘𝐴) ↑𝑚0))
22 fvex 6113 . . . . 5 (0g𝐴) ∈ V
2321, 22jctir 559 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) → ((coe1𝑂) ∈ ((Base‘𝐴) ↑𝑚0) ∧ (0g𝐴) ∈ V))
2412, 13, 14, 18coe1sfi 19404 . . . . 5 (𝑂𝐿 → (coe1𝑂) finSupp (0g𝐴))
2511, 24syl 17 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) → (coe1𝑂) finSupp (0g𝐴))
26 fsuppmapnn0ub 12657 . . . 4 (((coe1𝑂) ∈ ((Base‘𝐴) ↑𝑚0) ∧ (0g𝐴) ∈ V) → ((coe1𝑂) finSupp (0g𝐴) → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴))))
2723, 25, 26sylc 63 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)))
28 csbov 6586 . . . . . . . . . 10 𝑥 / 𝑘(𝐼((coe1𝑂)‘𝑘)𝐽) = (𝐼𝑥 / 𝑘((coe1𝑂)‘𝑘)𝐽)
29 csbfv 6143 . . . . . . . . . . 11 𝑥 / 𝑘((coe1𝑂)‘𝑘) = ((coe1𝑂)‘𝑥)
3029oveqi 6562 . . . . . . . . . 10 (𝐼𝑥 / 𝑘((coe1𝑂)‘𝑘)𝐽) = (𝐼((coe1𝑂)‘𝑥)𝐽)
3128, 30eqtri 2632 . . . . . . . . 9 𝑥 / 𝑘(𝐼((coe1𝑂)‘𝑘)𝐽) = (𝐼((coe1𝑂)‘𝑥)𝐽)
3231a1i 11 . . . . . . . 8 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑠 < 𝑥) ∧ ((coe1𝑂)‘𝑥) = (0g𝐴)) → 𝑥 / 𝑘(𝐼((coe1𝑂)‘𝑘)𝐽) = (𝐼((coe1𝑂)‘𝑥)𝐽))
33 oveq 6555 . . . . . . . . 9 (((coe1𝑂)‘𝑥) = (0g𝐴) → (𝐼((coe1𝑂)‘𝑥)𝐽) = (𝐼(0g𝐴)𝐽))
3433adantl 481 . . . . . . . 8 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑠 < 𝑥) ∧ ((coe1𝑂)‘𝑥) = (0g𝐴)) → (𝐼((coe1𝑂)‘𝑥)𝐽) = (𝐼(0g𝐴)𝐽))
35 eqid 2610 . . . . . . . . . . . . 13 (0g𝑅) = (0g𝑅)
363, 35mat0op 20044 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (0g𝐴) = (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑅)))
37363adant3 1074 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → (0g𝐴) = (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑅)))
38373ad2ant1 1075 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) → (0g𝐴) = (𝑖𝑁, 𝑗𝑁 ↦ (0g𝑅)))
39 eqidd 2611 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) ∧ (𝑖 = 𝐼𝑗 = 𝐽)) → (0g𝑅) = (0g𝑅))
4038, 39, 6, 8, 2ovmpt2d 6686 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) → (𝐼(0g𝐴)𝐽) = (0g𝑅))
4140ad4antr 764 . . . . . . . 8 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑠 < 𝑥) ∧ ((coe1𝑂)‘𝑥) = (0g𝐴)) → (𝐼(0g𝐴)𝐽) = (0g𝑅))
4232, 34, 413eqtrd 2648 . . . . . . 7 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑠 < 𝑥) ∧ ((coe1𝑂)‘𝑥) = (0g𝐴)) → 𝑥 / 𝑘(𝐼((coe1𝑂)‘𝑘)𝐽) = (0g𝑅))
4342exp31 628 . . . . . 6 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → (𝑠 < 𝑥 → (((coe1𝑂)‘𝑥) = (0g𝐴) → 𝑥 / 𝑘(𝐼((coe1𝑂)‘𝑘)𝐽) = (0g𝑅))))
4443a2d 29 . . . . 5 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ((𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)) → (𝑠 < 𝑥𝑥 / 𝑘(𝐼((coe1𝑂)‘𝑘)𝐽) = (0g𝑅))))
4544ralimdva 2945 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) ∧ 𝑠 ∈ ℕ0) → (∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)) → ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘(𝐼((coe1𝑂)‘𝑘)𝐽) = (0g𝑅))))
4645reximdva 3000 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) → (∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑂)‘𝑥) = (0g𝐴)) → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘(𝐼((coe1𝑂)‘𝑘)𝐽) = (0g𝑅))))
4727, 46mpd 15 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘(𝐼((coe1𝑂)‘𝑘)𝐽) = (0g𝑅)))
482, 17, 47mptnn0fsupp 12659 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝐼𝑁𝐽𝑁) → (𝑘 ∈ ℕ0 ↦ (𝐼((coe1𝑂)‘𝑘)𝐽)) finSupp (0g𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  wrex 2897  {crab 2900  Vcvv 3173  csb 3499   class class class wbr 4583  cmpt 4643  cfv 5804  (class class class)co 6549  cmpt2 6551  𝑚 cmap 7744  Fincfn 7841   finSupp cfsupp 8158   < clt 9953  0cn0 11169  Basecbs 15695  0gc0g 15923  Ringcrg 18370  Poly1cpl1 19368  coe1cco1 19369   Mat cmat 20032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-ot 4134  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-sup 8231  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-fz 12198  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-hom 15793  df-cco 15794  df-0g 15925  df-prds 15931  df-pws 15933  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-minusg 17249  df-sbg 17250  df-subg 17414  df-mgp 18313  df-ur 18325  df-ring 18372  df-subrg 18601  df-lmod 18688  df-lss 18754  df-sra 18993  df-rgmod 18994  df-psr 19177  df-mpl 19179  df-opsr 19181  df-psr1 19371  df-ply1 19373  df-coe1 19374  df-dsmm 19895  df-frlm 19910  df-mat 20033
This theorem is referenced by:  mply1topmatcllem  20427
  Copyright terms: Public domain W3C validator