Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpt2xopoveq Structured version   Visualization version   GIF version

Theorem mpt2xopoveq 7232
 Description: Value of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument. (Contributed by Alexander van der Vekens, 11-Oct-2017.)
Hypothesis
Ref Expression
mpt2xopoveq.f 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st𝑥) ↦ {𝑛 ∈ (1st𝑥) ∣ 𝜑})
Assertion
Ref Expression
mpt2xopoveq (((𝑉𝑋𝑊𝑌) ∧ 𝐾𝑉) → (⟨𝑉, 𝑊𝐹𝐾) = {𝑛𝑉[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑})
Distinct variable groups:   𝑛,𝐾,𝑥,𝑦   𝑛,𝑉,𝑥,𝑦   𝑛,𝑊,𝑥,𝑦   𝑛,𝑋,𝑥,𝑦   𝑛,𝑌,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑛)   𝐹(𝑥,𝑦,𝑛)

Proof of Theorem mpt2xopoveq
StepHypRef Expression
1 mpt2xopoveq.f . . 3 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st𝑥) ↦ {𝑛 ∈ (1st𝑥) ∣ 𝜑})
21a1i 11 . 2 (((𝑉𝑋𝑊𝑌) ∧ 𝐾𝑉) → 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st𝑥) ↦ {𝑛 ∈ (1st𝑥) ∣ 𝜑}))
3 fveq2 6103 . . . . 5 (𝑥 = ⟨𝑉, 𝑊⟩ → (1st𝑥) = (1st ‘⟨𝑉, 𝑊⟩))
4 op1stg 7071 . . . . . 6 ((𝑉𝑋𝑊𝑌) → (1st ‘⟨𝑉, 𝑊⟩) = 𝑉)
54adantr 480 . . . . 5 (((𝑉𝑋𝑊𝑌) ∧ 𝐾𝑉) → (1st ‘⟨𝑉, 𝑊⟩) = 𝑉)
63, 5sylan9eqr 2666 . . . 4 ((((𝑉𝑋𝑊𝑌) ∧ 𝐾𝑉) ∧ 𝑥 = ⟨𝑉, 𝑊⟩) → (1st𝑥) = 𝑉)
76adantrr 749 . . 3 ((((𝑉𝑋𝑊𝑌) ∧ 𝐾𝑉) ∧ (𝑥 = ⟨𝑉, 𝑊⟩ ∧ 𝑦 = 𝐾)) → (1st𝑥) = 𝑉)
8 sbceq1a 3413 . . . . . 6 (𝑦 = 𝐾 → (𝜑[𝐾 / 𝑦]𝜑))
98adantl 481 . . . . 5 ((𝑥 = ⟨𝑉, 𝑊⟩ ∧ 𝑦 = 𝐾) → (𝜑[𝐾 / 𝑦]𝜑))
109adantl 481 . . . 4 ((((𝑉𝑋𝑊𝑌) ∧ 𝐾𝑉) ∧ (𝑥 = ⟨𝑉, 𝑊⟩ ∧ 𝑦 = 𝐾)) → (𝜑[𝐾 / 𝑦]𝜑))
11 sbceq1a 3413 . . . . . 6 (𝑥 = ⟨𝑉, 𝑊⟩ → ([𝐾 / 𝑦]𝜑[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑))
1211adantr 480 . . . . 5 ((𝑥 = ⟨𝑉, 𝑊⟩ ∧ 𝑦 = 𝐾) → ([𝐾 / 𝑦]𝜑[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑))
1312adantl 481 . . . 4 ((((𝑉𝑋𝑊𝑌) ∧ 𝐾𝑉) ∧ (𝑥 = ⟨𝑉, 𝑊⟩ ∧ 𝑦 = 𝐾)) → ([𝐾 / 𝑦]𝜑[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑))
1410, 13bitrd 267 . . 3 ((((𝑉𝑋𝑊𝑌) ∧ 𝐾𝑉) ∧ (𝑥 = ⟨𝑉, 𝑊⟩ ∧ 𝑦 = 𝐾)) → (𝜑[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑))
157, 14rabeqbidv 3168 . 2 ((((𝑉𝑋𝑊𝑌) ∧ 𝐾𝑉) ∧ (𝑥 = ⟨𝑉, 𝑊⟩ ∧ 𝑦 = 𝐾)) → {𝑛 ∈ (1st𝑥) ∣ 𝜑} = {𝑛𝑉[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑})
16 opex 4859 . . 3 𝑉, 𝑊⟩ ∈ V
1716a1i 11 . 2 (((𝑉𝑋𝑊𝑌) ∧ 𝐾𝑉) → ⟨𝑉, 𝑊⟩ ∈ V)
18 simpr 476 . 2 (((𝑉𝑋𝑊𝑌) ∧ 𝐾𝑉) → 𝐾𝑉)
19 rabexg 4739 . . 3 (𝑉𝑋 → {𝑛𝑉[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑} ∈ V)
2019ad2antrr 758 . 2 (((𝑉𝑋𝑊𝑌) ∧ 𝐾𝑉) → {𝑛𝑉[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑} ∈ V)
21 equid 1926 . . 3 𝑧 = 𝑧
22 nfvd 1831 . . 3 (𝑧 = 𝑧 → Ⅎ𝑥((𝑉𝑋𝑊𝑌) ∧ 𝐾𝑉))
2321, 22ax-mp 5 . 2 𝑥((𝑉𝑋𝑊𝑌) ∧ 𝐾𝑉)
24 nfvd 1831 . . 3 (𝑧 = 𝑧 → Ⅎ𝑦((𝑉𝑋𝑊𝑌) ∧ 𝐾𝑉))
2521, 24ax-mp 5 . 2 𝑦((𝑉𝑋𝑊𝑌) ∧ 𝐾𝑉)
26 nfcv 2751 . 2 𝑦𝑉, 𝑊
27 nfcv 2751 . 2 𝑥𝐾
28 nfsbc1v 3422 . . 3 𝑥[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑
29 nfcv 2751 . . 3 𝑥𝑉
3028, 29nfrab 3100 . 2 𝑥{𝑛𝑉[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑}
31 nfsbc1v 3422 . . . 4 𝑦[𝐾 / 𝑦]𝜑
3226, 31nfsbc 3424 . . 3 𝑦[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑
33 nfcv 2751 . . 3 𝑦𝑉
3432, 33nfrab 3100 . 2 𝑦{𝑛𝑉[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑}
352, 15, 6, 17, 18, 20, 23, 25, 26, 27, 30, 34ovmpt2dxf 6684 1 (((𝑉𝑋𝑊𝑌) ∧ 𝐾𝑉) → (⟨𝑉, 𝑊𝐹𝐾) = {𝑛𝑉[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑})
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   = wceq 1475  Ⅎwnf 1699   ∈ wcel 1977  {crab 2900  Vcvv 3173  [wsbc 3402  ⟨cop 4131  ‘cfv 5804  (class class class)co 6549   ↦ cmpt2 6551  1st c1st 7057 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-iota 5768  df-fun 5806  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059 This theorem is referenced by:  mpt2xopovel  7233  mpt2xopoveqd  7234  nbgraopALT  25953
 Copyright terms: Public domain W3C validator