MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpt22eqb Structured version   Visualization version   GIF version

Theorem mpt22eqb 6667
Description: Bidirectional equality theorem for a mapping abstraction. Equivalent to eqfnov2 6665. (Contributed by Mario Carneiro, 4-Jan-2017.)
Assertion
Ref Expression
mpt22eqb (∀𝑥𝐴𝑦𝐵 𝐶𝑉 → ((𝑥𝐴, 𝑦𝐵𝐶) = (𝑥𝐴, 𝑦𝐵𝐷) ↔ ∀𝑥𝐴𝑦𝐵 𝐶 = 𝐷))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑦,𝐵
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem mpt22eqb
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 pm13.183 3313 . . . . . 6 (𝐶𝑉 → (𝐶 = 𝐷 ↔ ∀𝑧(𝑧 = 𝐶𝑧 = 𝐷)))
21ralimi 2936 . . . . 5 (∀𝑦𝐵 𝐶𝑉 → ∀𝑦𝐵 (𝐶 = 𝐷 ↔ ∀𝑧(𝑧 = 𝐶𝑧 = 𝐷)))
3 ralbi 3050 . . . . 5 (∀𝑦𝐵 (𝐶 = 𝐷 ↔ ∀𝑧(𝑧 = 𝐶𝑧 = 𝐷)) → (∀𝑦𝐵 𝐶 = 𝐷 ↔ ∀𝑦𝐵𝑧(𝑧 = 𝐶𝑧 = 𝐷)))
42, 3syl 17 . . . 4 (∀𝑦𝐵 𝐶𝑉 → (∀𝑦𝐵 𝐶 = 𝐷 ↔ ∀𝑦𝐵𝑧(𝑧 = 𝐶𝑧 = 𝐷)))
54ralimi 2936 . . 3 (∀𝑥𝐴𝑦𝐵 𝐶𝑉 → ∀𝑥𝐴 (∀𝑦𝐵 𝐶 = 𝐷 ↔ ∀𝑦𝐵𝑧(𝑧 = 𝐶𝑧 = 𝐷)))
6 ralbi 3050 . . 3 (∀𝑥𝐴 (∀𝑦𝐵 𝐶 = 𝐷 ↔ ∀𝑦𝐵𝑧(𝑧 = 𝐶𝑧 = 𝐷)) → (∀𝑥𝐴𝑦𝐵 𝐶 = 𝐷 ↔ ∀𝑥𝐴𝑦𝐵𝑧(𝑧 = 𝐶𝑧 = 𝐷)))
75, 6syl 17 . 2 (∀𝑥𝐴𝑦𝐵 𝐶𝑉 → (∀𝑥𝐴𝑦𝐵 𝐶 = 𝐷 ↔ ∀𝑥𝐴𝑦𝐵𝑧(𝑧 = 𝐶𝑧 = 𝐷)))
8 df-mpt2 6554 . . . 4 (𝑥𝐴, 𝑦𝐵𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
9 df-mpt2 6554 . . . 4 (𝑥𝐴, 𝑦𝐵𝐷) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐷)}
108, 9eqeq12i 2624 . . 3 ((𝑥𝐴, 𝑦𝐵𝐶) = (𝑥𝐴, 𝑦𝐵𝐷) ↔ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐷)})
11 eqoprab2b 6611 . . 3 ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐷)} ↔ ∀𝑥𝑦𝑧(((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶) ↔ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐷)))
12 pm5.32 666 . . . . . . 7 (((𝑥𝐴𝑦𝐵) → (𝑧 = 𝐶𝑧 = 𝐷)) ↔ (((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶) ↔ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐷)))
1312albii 1737 . . . . . 6 (∀𝑧((𝑥𝐴𝑦𝐵) → (𝑧 = 𝐶𝑧 = 𝐷)) ↔ ∀𝑧(((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶) ↔ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐷)))
14 19.21v 1855 . . . . . 6 (∀𝑧((𝑥𝐴𝑦𝐵) → (𝑧 = 𝐶𝑧 = 𝐷)) ↔ ((𝑥𝐴𝑦𝐵) → ∀𝑧(𝑧 = 𝐶𝑧 = 𝐷)))
1513, 14bitr3i 265 . . . . 5 (∀𝑧(((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶) ↔ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐷)) ↔ ((𝑥𝐴𝑦𝐵) → ∀𝑧(𝑧 = 𝐶𝑧 = 𝐷)))
16152albii 1738 . . . 4 (∀𝑥𝑦𝑧(((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶) ↔ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐷)) ↔ ∀𝑥𝑦((𝑥𝐴𝑦𝐵) → ∀𝑧(𝑧 = 𝐶𝑧 = 𝐷)))
17 r2al 2923 . . . 4 (∀𝑥𝐴𝑦𝐵𝑧(𝑧 = 𝐶𝑧 = 𝐷) ↔ ∀𝑥𝑦((𝑥𝐴𝑦𝐵) → ∀𝑧(𝑧 = 𝐶𝑧 = 𝐷)))
1816, 17bitr4i 266 . . 3 (∀𝑥𝑦𝑧(((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶) ↔ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐷)) ↔ ∀𝑥𝐴𝑦𝐵𝑧(𝑧 = 𝐶𝑧 = 𝐷))
1910, 11, 183bitri 285 . 2 ((𝑥𝐴, 𝑦𝐵𝐶) = (𝑥𝐴, 𝑦𝐵𝐷) ↔ ∀𝑥𝐴𝑦𝐵𝑧(𝑧 = 𝐶𝑧 = 𝐷))
207, 19syl6rbbr 278 1 (∀𝑥𝐴𝑦𝐵 𝐶𝑉 → ((𝑥𝐴, 𝑦𝐵𝐶) = (𝑥𝐴, 𝑦𝐵𝐷) ↔ ∀𝑥𝐴𝑦𝐵 𝐶 = 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  wal 1473   = wceq 1475  wcel 1977  wral 2896  {coprab 6550  cmpt2 6551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-oprab 6553  df-mpt2 6554
This theorem is referenced by:  homfeq  16177  comfeq  16189
  Copyright terms: Public domain W3C validator