MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mply1topmatval Structured version   Visualization version   GIF version

Theorem mply1topmatval 20428
Description: A polynomial over matrices transformed into a polynomial matrix. 𝐼 is the inverse function of the transformation 𝑇 of polynomial matrices into polynomials over matrices: (𝑇‘(𝐼𝑂)) = 𝑂) (see mp2pm2mp 20435). (Contributed by AV, 6-Oct-2019.)
Hypotheses
Ref Expression
mply1topmat.a 𝐴 = (𝑁 Mat 𝑅)
mply1topmat.q 𝑄 = (Poly1𝐴)
mply1topmat.l 𝐿 = (Base‘𝑄)
mply1topmat.p 𝑃 = (Poly1𝑅)
mply1topmat.m · = ( ·𝑠𝑃)
mply1topmat.e 𝐸 = (.g‘(mulGrp‘𝑃))
mply1topmat.y 𝑌 = (var1𝑅)
mply1topmat.i 𝐼 = (𝑝𝐿 ↦ (𝑖𝑁, 𝑗𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌))))))
Assertion
Ref Expression
mply1topmatval ((𝑁𝑉𝑂𝐿) → (𝐼𝑂) = (𝑖𝑁, 𝑗𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))))))
Distinct variable groups:   𝑖,𝑁,𝑗,𝑝   𝐸,𝑝   𝐿,𝑝   𝑃,𝑝   𝑉,𝑝   𝑌,𝑝   𝑖,𝑂,𝑗,𝑘,𝑝   · ,𝑘,𝑝
Allowed substitution hints:   𝐴(𝑖,𝑗,𝑘,𝑝)   𝑃(𝑖,𝑗,𝑘)   𝑄(𝑖,𝑗,𝑘,𝑝)   𝑅(𝑖,𝑗,𝑘,𝑝)   · (𝑖,𝑗)   𝐸(𝑖,𝑗,𝑘)   𝐼(𝑖,𝑗,𝑘,𝑝)   𝐿(𝑖,𝑗,𝑘)   𝑁(𝑘)   𝑉(𝑖,𝑗,𝑘)   𝑌(𝑖,𝑗,𝑘)

Proof of Theorem mply1topmatval
StepHypRef Expression
1 mply1topmat.i . . 3 𝐼 = (𝑝𝐿 ↦ (𝑖𝑁, 𝑗𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌))))))
21a1i 11 . 2 ((𝑁𝑉𝑂𝐿) → 𝐼 = (𝑝𝐿 ↦ (𝑖𝑁, 𝑗𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))))
3 fveq2 6103 . . . . . . . . 9 (𝑝 = 𝑂 → (coe1𝑝) = (coe1𝑂))
43fveq1d 6105 . . . . . . . 8 (𝑝 = 𝑂 → ((coe1𝑝)‘𝑘) = ((coe1𝑂)‘𝑘))
54oveqd 6566 . . . . . . 7 (𝑝 = 𝑂 → (𝑖((coe1𝑝)‘𝑘)𝑗) = (𝑖((coe1𝑂)‘𝑘)𝑗))
65oveq1d 6564 . . . . . 6 (𝑝 = 𝑂 → ((𝑖((coe1𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌)) = ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))
76mpteq2dv 4673 . . . . 5 (𝑝 = 𝑂 → (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌))) = (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))))
87oveq2d 6565 . . . 4 (𝑝 = 𝑂 → (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌)))) = (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))
98mpt2eq3dv 6619 . . 3 (𝑝 = 𝑂 → (𝑖𝑁, 𝑗𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌))))) = (𝑖𝑁, 𝑗𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))))))
109adantl 481 . 2 (((𝑁𝑉𝑂𝐿) ∧ 𝑝 = 𝑂) → (𝑖𝑁, 𝑗𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌))))) = (𝑖𝑁, 𝑗𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))))))
11 simpr 476 . 2 ((𝑁𝑉𝑂𝐿) → 𝑂𝐿)
12 simpl 472 . . 3 ((𝑁𝑉𝑂𝐿) → 𝑁𝑉)
13 mpt2exga 7135 . . 3 ((𝑁𝑉𝑁𝑉) → (𝑖𝑁, 𝑗𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))))) ∈ V)
1412, 13syldan 486 . 2 ((𝑁𝑉𝑂𝐿) → (𝑖𝑁, 𝑗𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))))) ∈ V)
152, 10, 11, 14fvmptd 6197 1 ((𝑁𝑉𝑂𝐿) → (𝐼𝑂) = (𝑖𝑁, 𝑗𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  Vcvv 3173  cmpt 4643  cfv 5804  (class class class)co 6549  cmpt2 6551  0cn0 11169  Basecbs 15695   ·𝑠 cvsca 15772   Σg cgsu 15924  .gcmg 17363  mulGrpcmgp 18312  var1cv1 19367  Poly1cpl1 19368  coe1cco1 19369   Mat cmat 20032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060
This theorem is referenced by:  mply1topmatcl  20429
  Copyright terms: Public domain W3C validator