Proof of Theorem mply1topmatcl
Step | Hyp | Ref
| Expression |
1 | | mply1topmat.a |
. . . 4
⊢ 𝐴 = (𝑁 Mat 𝑅) |
2 | | mply1topmat.q |
. . . 4
⊢ 𝑄 = (Poly1‘𝐴) |
3 | | mply1topmat.l |
. . . 4
⊢ 𝐿 = (Base‘𝑄) |
4 | | mply1topmat.p |
. . . 4
⊢ 𝑃 = (Poly1‘𝑅) |
5 | | mply1topmat.m |
. . . 4
⊢ · = (
·𝑠 ‘𝑃) |
6 | | mply1topmat.e |
. . . 4
⊢ 𝐸 =
(.g‘(mulGrp‘𝑃)) |
7 | | mply1topmat.y |
. . . 4
⊢ 𝑌 = (var1‘𝑅) |
8 | | mply1topmat.i |
. . . 4
⊢ 𝐼 = (𝑝 ∈ 𝐿 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0
↦ ((𝑖((coe1‘𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))) |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | mply1topmatval 20428 |
. . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑂 ∈ 𝐿) → (𝐼‘𝑂) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0
↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))) |
10 | 9 | 3adant2 1073 |
. 2
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) → (𝐼‘𝑂) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0
↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))) |
11 | | mply1topmatcl.c |
. . 3
⊢ 𝐶 = (𝑁 Mat 𝑃) |
12 | | eqid 2610 |
. . 3
⊢
(Base‘𝑃) =
(Base‘𝑃) |
13 | | mply1topmatcl.b |
. . 3
⊢ 𝐵 = (Base‘𝐶) |
14 | | simp1 1054 |
. . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) → 𝑁 ∈ Fin) |
15 | | fvex 6113 |
. . . . 5
⊢
(Poly1‘𝑅) ∈ V |
16 | 4, 15 | eqeltri 2684 |
. . . 4
⊢ 𝑃 ∈ V |
17 | 16 | a1i 11 |
. . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) → 𝑃 ∈ V) |
18 | | eqid 2610 |
. . . 4
⊢
(0g‘𝑃) = (0g‘𝑃) |
19 | 4 | ply1ring 19439 |
. . . . . . 7
⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
20 | | ringcmn 18404 |
. . . . . . 7
⊢ (𝑃 ∈ Ring → 𝑃 ∈ CMnd) |
21 | 19, 20 | syl 17 |
. . . . . 6
⊢ (𝑅 ∈ Ring → 𝑃 ∈ CMnd) |
22 | 21 | 3ad2ant2 1076 |
. . . . 5
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) → 𝑃 ∈ CMnd) |
23 | 22 | 3ad2ant1 1075 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑃 ∈ CMnd) |
24 | | nn0ex 11175 |
. . . . 5
⊢
ℕ0 ∈ V |
25 | 24 | a1i 11 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → ℕ0 ∈
V) |
26 | 4 | ply1lmod 19443 |
. . . . . . . . 9
⊢ (𝑅 ∈ Ring → 𝑃 ∈ LMod) |
27 | 26 | 3ad2ant2 1076 |
. . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) → 𝑃 ∈ LMod) |
28 | 27 | 3ad2ant1 1075 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑃 ∈ LMod) |
29 | 28 | adantr 480 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) ∧ 𝑘 ∈ ℕ0) → 𝑃 ∈ LMod) |
30 | | eqid 2610 |
. . . . . . . 8
⊢
(Base‘𝑅) =
(Base‘𝑅) |
31 | | eqid 2610 |
. . . . . . . 8
⊢
(Base‘𝐴) =
(Base‘𝐴) |
32 | | simpl2 1058 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) ∧ 𝑘 ∈ ℕ0) → 𝑖 ∈ 𝑁) |
33 | | simpl3 1059 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) ∧ 𝑘 ∈ ℕ0) → 𝑗 ∈ 𝑁) |
34 | | simpl13 1131 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) ∧ 𝑘 ∈ ℕ0) → 𝑂 ∈ 𝐿) |
35 | | eqid 2610 |
. . . . . . . . . . 11
⊢
(coe1‘𝑂) = (coe1‘𝑂) |
36 | 35, 3, 2, 31 | coe1f 19402 |
. . . . . . . . . 10
⊢ (𝑂 ∈ 𝐿 → (coe1‘𝑂):ℕ0⟶(Base‘𝐴)) |
37 | 34, 36 | syl 17 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) ∧ 𝑘 ∈ ℕ0) →
(coe1‘𝑂):ℕ0⟶(Base‘𝐴)) |
38 | | simpr 476 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈
ℕ0) |
39 | 37, 38 | ffvelrnd 6268 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) ∧ 𝑘 ∈ ℕ0) →
((coe1‘𝑂)‘𝑘) ∈ (Base‘𝐴)) |
40 | 1, 30, 31, 32, 33, 39 | matecld 20051 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) ∧ 𝑘 ∈ ℕ0) → (𝑖((coe1‘𝑂)‘𝑘)𝑗) ∈ (Base‘𝑅)) |
41 | 4 | ply1sca 19444 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝑃)) |
42 | 41 | eqcomd 2616 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ Ring →
(Scalar‘𝑃) = 𝑅) |
43 | 42 | 3ad2ant2 1076 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) → (Scalar‘𝑃) = 𝑅) |
44 | 43 | fveq2d 6107 |
. . . . . . . . 9
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) → (Base‘(Scalar‘𝑃)) = (Base‘𝑅)) |
45 | 44 | 3ad2ant1 1075 |
. . . . . . . 8
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → (Base‘(Scalar‘𝑃)) = (Base‘𝑅)) |
46 | 45 | adantr 480 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) ∧ 𝑘 ∈ ℕ0) →
(Base‘(Scalar‘𝑃)) = (Base‘𝑅)) |
47 | 40, 46 | eleqtrrd 2691 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) ∧ 𝑘 ∈ ℕ0) → (𝑖((coe1‘𝑂)‘𝑘)𝑗) ∈ (Base‘(Scalar‘𝑃))) |
48 | 19 | 3ad2ant2 1076 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) → 𝑃 ∈ Ring) |
49 | | eqid 2610 |
. . . . . . . . . . 11
⊢
(mulGrp‘𝑃) =
(mulGrp‘𝑃) |
50 | 49 | ringmgp 18376 |
. . . . . . . . . 10
⊢ (𝑃 ∈ Ring →
(mulGrp‘𝑃) ∈
Mnd) |
51 | 48, 50 | syl 17 |
. . . . . . . . 9
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) → (mulGrp‘𝑃) ∈ Mnd) |
52 | 51 | 3ad2ant1 1075 |
. . . . . . . 8
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → (mulGrp‘𝑃) ∈ Mnd) |
53 | 52 | adantr 480 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) ∧ 𝑘 ∈ ℕ0) →
(mulGrp‘𝑃) ∈
Mnd) |
54 | 7, 4, 12 | vr1cl 19408 |
. . . . . . . . . 10
⊢ (𝑅 ∈ Ring → 𝑌 ∈ (Base‘𝑃)) |
55 | 54 | 3ad2ant2 1076 |
. . . . . . . . 9
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) → 𝑌 ∈ (Base‘𝑃)) |
56 | 55 | 3ad2ant1 1075 |
. . . . . . . 8
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑌 ∈ (Base‘𝑃)) |
57 | 56 | adantr 480 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) ∧ 𝑘 ∈ ℕ0) → 𝑌 ∈ (Base‘𝑃)) |
58 | 49, 12 | mgpbas 18318 |
. . . . . . . 8
⊢
(Base‘𝑃) =
(Base‘(mulGrp‘𝑃)) |
59 | 58, 6 | mulgnn0cl 17381 |
. . . . . . 7
⊢
(((mulGrp‘𝑃)
∈ Mnd ∧ 𝑘 ∈
ℕ0 ∧ 𝑌
∈ (Base‘𝑃))
→ (𝑘𝐸𝑌) ∈ (Base‘𝑃)) |
60 | 53, 38, 57, 59 | syl3anc 1318 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) ∧ 𝑘 ∈ ℕ0) → (𝑘𝐸𝑌) ∈ (Base‘𝑃)) |
61 | | eqid 2610 |
. . . . . . 7
⊢
(Scalar‘𝑃) =
(Scalar‘𝑃) |
62 | | eqid 2610 |
. . . . . . 7
⊢
(Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃)) |
63 | 12, 61, 5, 62 | lmodvscl 18703 |
. . . . . 6
⊢ ((𝑃 ∈ LMod ∧ (𝑖((coe1‘𝑂)‘𝑘)𝑗) ∈ (Base‘(Scalar‘𝑃)) ∧ (𝑘𝐸𝑌) ∈ (Base‘𝑃)) → ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)) ∈ (Base‘𝑃)) |
64 | 29, 47, 60, 63 | syl3anc 1318 |
. . . . 5
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) ∧ 𝑘 ∈ ℕ0) → ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)) ∈ (Base‘𝑃)) |
65 | | eqid 2610 |
. . . . 5
⊢ (𝑘 ∈ ℕ0
↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))) = (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))) |
66 | 64, 65 | fmptd 6292 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))):ℕ0⟶(Base‘𝑃)) |
67 | 1, 2, 3, 4, 5, 6, 7 | mply1topmatcllem 20427 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))) finSupp (0g‘𝑃)) |
68 | 12, 18, 23, 25, 66, 67 | gsumcl 18139 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → (𝑃 Σg (𝑘 ∈ ℕ0
↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))) ∈ (Base‘𝑃)) |
69 | 11, 12, 13, 14, 17, 68 | matbas2d 20048 |
. 2
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0
↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))))) ∈ 𝐵) |
70 | 10, 69 | eqeltrd 2688 |
1
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) → (𝐼‘𝑂) ∈ 𝐵) |