Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mpllss | Structured version Visualization version GIF version |
Description: The set of polynomials is closed under scalar multiplication, i.e. it is a linear subspace of the set of power series. (Contributed by Mario Carneiro, 7-Jan-2015.) (Proof shortened by AV, 16-Jul-2019.) |
Ref | Expression |
---|---|
mplsubg.s | ⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
mplsubg.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
mplsubg.u | ⊢ 𝑈 = (Base‘𝑃) |
mplsubg.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
mpllss.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
Ref | Expression |
---|---|
mpllss | ⊢ (𝜑 → 𝑈 ∈ (LSubSp‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mplsubg.s | . 2 ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | |
2 | eqid 2610 | . 2 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
3 | eqid 2610 | . 2 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
4 | eqid 2610 | . 2 ⊢ {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
5 | mplsubg.i | . 2 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
6 | 0fin 8073 | . . 3 ⊢ ∅ ∈ Fin | |
7 | 6 | a1i 11 | . 2 ⊢ (𝜑 → ∅ ∈ Fin) |
8 | unfi 8112 | . . 3 ⊢ ((𝑥 ∈ Fin ∧ 𝑦 ∈ Fin) → (𝑥 ∪ 𝑦) ∈ Fin) | |
9 | 8 | adantl 481 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ Fin ∧ 𝑦 ∈ Fin)) → (𝑥 ∪ 𝑦) ∈ Fin) |
10 | ssfi 8065 | . . 3 ⊢ ((𝑥 ∈ Fin ∧ 𝑦 ⊆ 𝑥) → 𝑦 ∈ Fin) | |
11 | 10 | adantl 481 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ Fin ∧ 𝑦 ⊆ 𝑥)) → 𝑦 ∈ Fin) |
12 | mplsubg.p | . . 3 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
13 | mplsubg.u | . . 3 ⊢ 𝑈 = (Base‘𝑃) | |
14 | 1, 12, 13, 5 | mplsubglem2 19257 | . 2 ⊢ (𝜑 → 𝑈 = {𝑔 ∈ (Base‘𝑆) ∣ (𝑔 supp (0g‘𝑅)) ∈ Fin}) |
15 | mpllss.r | . 2 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
16 | 1, 2, 3, 4, 5, 7, 9, 11, 14, 15 | mpllsslem 19256 | 1 ⊢ (𝜑 → 𝑈 ∈ (LSubSp‘𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1475 ∈ wcel 1977 {crab 2900 ∪ cun 3538 ⊆ wss 3540 ∅c0 3874 ◡ccnv 5037 “ cima 5041 ‘cfv 5804 (class class class)co 6549 ↑𝑚 cmap 7744 Fincfn 7841 ℕcn 10897 ℕ0cn0 11169 Basecbs 15695 0gc0g 15923 Ringcrg 18370 LSubSpclss 18753 mPwSer cmps 19172 mPoly cmpl 19174 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-int 4411 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-of 6795 df-om 6958 df-1st 7059 df-2nd 7060 df-supp 7183 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-1o 7447 df-oadd 7451 df-er 7629 df-map 7746 df-en 7842 df-dom 7843 df-sdom 7844 df-fin 7845 df-fsupp 8159 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-nn 10898 df-2 10956 df-3 10957 df-4 10958 df-5 10959 df-6 10960 df-7 10961 df-8 10962 df-9 10963 df-n0 11170 df-z 11255 df-uz 11564 df-fz 12198 df-struct 15697 df-ndx 15698 df-slot 15699 df-base 15700 df-sets 15701 df-ress 15702 df-plusg 15781 df-mulr 15782 df-sca 15784 df-vsca 15785 df-tset 15787 df-0g 15925 df-mgm 17065 df-sgrp 17107 df-mnd 17118 df-grp 17248 df-minusg 17249 df-subg 17414 df-mgp 18313 df-ring 18372 df-lss 18754 df-psr 19177 df-mpl 19179 |
This theorem is referenced by: mpllmod 19272 mplassa 19275 mplbas2 19291 mplind 19323 ply1lss 19387 |
Copyright terms: Public domain | W3C validator |