MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  motco Structured version   Visualization version   GIF version

Theorem motco 25235
Description: The composition of two motions is a motion. (Contributed by Thierry Arnoux, 15-Dec-2019.)
Hypotheses
Ref Expression
ismot.p 𝑃 = (Base‘𝐺)
ismot.m = (dist‘𝐺)
motgrp.1 (𝜑𝐺𝑉)
motco.2 (𝜑𝐹 ∈ (𝐺Ismt𝐺))
motco.3 (𝜑𝐻 ∈ (𝐺Ismt𝐺))
Assertion
Ref Expression
motco (𝜑 → (𝐹𝐻) ∈ (𝐺Ismt𝐺))

Proof of Theorem motco
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ismot.p . . . 4 𝑃 = (Base‘𝐺)
2 ismot.m . . . 4 = (dist‘𝐺)
3 motgrp.1 . . . 4 (𝜑𝐺𝑉)
4 motco.2 . . . 4 (𝜑𝐹 ∈ (𝐺Ismt𝐺))
51, 2, 3, 4motf1o 25233 . . 3 (𝜑𝐹:𝑃1-1-onto𝑃)
6 motco.3 . . . 4 (𝜑𝐻 ∈ (𝐺Ismt𝐺))
71, 2, 3, 6motf1o 25233 . . 3 (𝜑𝐻:𝑃1-1-onto𝑃)
8 f1oco 6072 . . 3 ((𝐹:𝑃1-1-onto𝑃𝐻:𝑃1-1-onto𝑃) → (𝐹𝐻):𝑃1-1-onto𝑃)
95, 7, 8syl2anc 691 . 2 (𝜑 → (𝐹𝐻):𝑃1-1-onto𝑃)
10 f1of 6050 . . . . . . . 8 (𝐻:𝑃1-1-onto𝑃𝐻:𝑃𝑃)
117, 10syl 17 . . . . . . 7 (𝜑𝐻:𝑃𝑃)
1211adantr 480 . . . . . 6 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → 𝐻:𝑃𝑃)
13 simprl 790 . . . . . 6 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → 𝑎𝑃)
14 fvco3 6185 . . . . . 6 ((𝐻:𝑃𝑃𝑎𝑃) → ((𝐹𝐻)‘𝑎) = (𝐹‘(𝐻𝑎)))
1512, 13, 14syl2anc 691 . . . . 5 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → ((𝐹𝐻)‘𝑎) = (𝐹‘(𝐻𝑎)))
16 simprr 792 . . . . . 6 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → 𝑏𝑃)
17 fvco3 6185 . . . . . 6 ((𝐻:𝑃𝑃𝑏𝑃) → ((𝐹𝐻)‘𝑏) = (𝐹‘(𝐻𝑏)))
1812, 16, 17syl2anc 691 . . . . 5 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → ((𝐹𝐻)‘𝑏) = (𝐹‘(𝐻𝑏)))
1915, 18oveq12d 6567 . . . 4 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → (((𝐹𝐻)‘𝑎) ((𝐹𝐻)‘𝑏)) = ((𝐹‘(𝐻𝑎)) (𝐹‘(𝐻𝑏))))
203adantr 480 . . . . 5 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → 𝐺𝑉)
2112, 13ffvelrnd 6268 . . . . 5 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → (𝐻𝑎) ∈ 𝑃)
2212, 16ffvelrnd 6268 . . . . 5 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → (𝐻𝑏) ∈ 𝑃)
234adantr 480 . . . . 5 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → 𝐹 ∈ (𝐺Ismt𝐺))
241, 2, 20, 21, 22, 23motcgr 25231 . . . 4 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → ((𝐹‘(𝐻𝑎)) (𝐹‘(𝐻𝑏))) = ((𝐻𝑎) (𝐻𝑏)))
256adantr 480 . . . . 5 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → 𝐻 ∈ (𝐺Ismt𝐺))
261, 2, 20, 13, 16, 25motcgr 25231 . . . 4 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → ((𝐻𝑎) (𝐻𝑏)) = (𝑎 𝑏))
2719, 24, 263eqtrd 2648 . . 3 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → (((𝐹𝐻)‘𝑎) ((𝐹𝐻)‘𝑏)) = (𝑎 𝑏))
2827ralrimivva 2954 . 2 (𝜑 → ∀𝑎𝑃𝑏𝑃 (((𝐹𝐻)‘𝑎) ((𝐹𝐻)‘𝑏)) = (𝑎 𝑏))
291, 2ismot 25230 . . 3 (𝐺𝑉 → ((𝐹𝐻) ∈ (𝐺Ismt𝐺) ↔ ((𝐹𝐻):𝑃1-1-onto𝑃 ∧ ∀𝑎𝑃𝑏𝑃 (((𝐹𝐻)‘𝑎) ((𝐹𝐻)‘𝑏)) = (𝑎 𝑏))))
303, 29syl 17 . 2 (𝜑 → ((𝐹𝐻) ∈ (𝐺Ismt𝐺) ↔ ((𝐹𝐻):𝑃1-1-onto𝑃 ∧ ∀𝑎𝑃𝑏𝑃 (((𝐹𝐻)‘𝑎) ((𝐹𝐻)‘𝑏)) = (𝑎 𝑏))))
319, 28, 30mpbir2and 959 1 (𝜑 → (𝐹𝐻) ∈ (𝐺Ismt𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wral 2896  ccom 5042  wf 5800  1-1-ontowf1o 5803  cfv 5804  (class class class)co 6549  Basecbs 15695  distcds 15777  Ismtcismt 25227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-map 7746  df-ismt 25228
This theorem is referenced by:  motgrp  25238
  Copyright terms: Public domain W3C validator