Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  moriotass Structured version   Visualization version   GIF version

Theorem moriotass 6539
 Description: Restriction of a unique element to a smaller class. (Contributed by NM, 19-Feb-2006.) (Revised by NM, 16-Jun-2017.)
Assertion
Ref Expression
moriotass ((𝐴𝐵 ∧ ∃𝑥𝐴 𝜑 ∧ ∃*𝑥𝐵 𝜑) → (𝑥𝐴 𝜑) = (𝑥𝐵 𝜑))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem moriotass
StepHypRef Expression
1 ssrexv 3630 . . . . 5 (𝐴𝐵 → (∃𝑥𝐴 𝜑 → ∃𝑥𝐵 𝜑))
21imp 444 . . . 4 ((𝐴𝐵 ∧ ∃𝑥𝐴 𝜑) → ∃𝑥𝐵 𝜑)
323adant3 1074 . . 3 ((𝐴𝐵 ∧ ∃𝑥𝐴 𝜑 ∧ ∃*𝑥𝐵 𝜑) → ∃𝑥𝐵 𝜑)
4 simp3 1056 . . 3 ((𝐴𝐵 ∧ ∃𝑥𝐴 𝜑 ∧ ∃*𝑥𝐵 𝜑) → ∃*𝑥𝐵 𝜑)
5 reu5 3136 . . 3 (∃!𝑥𝐵 𝜑 ↔ (∃𝑥𝐵 𝜑 ∧ ∃*𝑥𝐵 𝜑))
63, 4, 5sylanbrc 695 . 2 ((𝐴𝐵 ∧ ∃𝑥𝐴 𝜑 ∧ ∃*𝑥𝐵 𝜑) → ∃!𝑥𝐵 𝜑)
7 riotass 6538 . 2 ((𝐴𝐵 ∧ ∃𝑥𝐴 𝜑 ∧ ∃!𝑥𝐵 𝜑) → (𝑥𝐴 𝜑) = (𝑥𝐵 𝜑))
86, 7syld3an3 1363 1 ((𝐴𝐵 ∧ ∃𝑥𝐴 𝜑 ∧ ∃*𝑥𝐵 𝜑) → (𝑥𝐴 𝜑) = (𝑥𝐵 𝜑))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ w3a 1031   = wceq 1475  ∃wrex 2897  ∃!wreu 2898  ∃*wrmo 2899   ⊆ wss 3540  ℩crio 6510 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-un 3545  df-in 3547  df-ss 3554  df-sn 4126  df-pr 4128  df-uni 4373  df-iota 5768  df-riota 6511 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator