Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > morex | Structured version Visualization version GIF version |
Description: Derive membership from uniqueness. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
morex.1 | ⊢ 𝐵 ∈ V |
morex.2 | ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
morex | ⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥𝜑) → (𝜓 → 𝐵 ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rex 2902 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
2 | exancom 1774 | . . . 4 ⊢ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃𝑥(𝜑 ∧ 𝑥 ∈ 𝐴)) | |
3 | 1, 2 | bitri 263 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝜑 ∧ 𝑥 ∈ 𝐴)) |
4 | nfmo1 2469 | . . . . . 6 ⊢ Ⅎ𝑥∃*𝑥𝜑 | |
5 | nfe1 2014 | . . . . . 6 ⊢ Ⅎ𝑥∃𝑥(𝜑 ∧ 𝑥 ∈ 𝐴) | |
6 | 4, 5 | nfan 1816 | . . . . 5 ⊢ Ⅎ𝑥(∃*𝑥𝜑 ∧ ∃𝑥(𝜑 ∧ 𝑥 ∈ 𝐴)) |
7 | mopick 2523 | . . . . 5 ⊢ ((∃*𝑥𝜑 ∧ ∃𝑥(𝜑 ∧ 𝑥 ∈ 𝐴)) → (𝜑 → 𝑥 ∈ 𝐴)) | |
8 | 6, 7 | alrimi 2069 | . . . 4 ⊢ ((∃*𝑥𝜑 ∧ ∃𝑥(𝜑 ∧ 𝑥 ∈ 𝐴)) → ∀𝑥(𝜑 → 𝑥 ∈ 𝐴)) |
9 | morex.1 | . . . . 5 ⊢ 𝐵 ∈ V | |
10 | morex.2 | . . . . . 6 ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) | |
11 | eleq1 2676 | . . . . . 6 ⊢ (𝑥 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝐵 ∈ 𝐴)) | |
12 | 10, 11 | imbi12d 333 | . . . . 5 ⊢ (𝑥 = 𝐵 → ((𝜑 → 𝑥 ∈ 𝐴) ↔ (𝜓 → 𝐵 ∈ 𝐴))) |
13 | 9, 12 | spcv 3272 | . . . 4 ⊢ (∀𝑥(𝜑 → 𝑥 ∈ 𝐴) → (𝜓 → 𝐵 ∈ 𝐴)) |
14 | 8, 13 | syl 17 | . . 3 ⊢ ((∃*𝑥𝜑 ∧ ∃𝑥(𝜑 ∧ 𝑥 ∈ 𝐴)) → (𝜓 → 𝐵 ∈ 𝐴)) |
15 | 3, 14 | sylan2b 491 | . 2 ⊢ ((∃*𝑥𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜑) → (𝜓 → 𝐵 ∈ 𝐴)) |
16 | 15 | ancoms 468 | 1 ⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥𝜑) → (𝜓 → 𝐵 ∈ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∧ wa 383 ∀wal 1473 = wceq 1475 ∃wex 1695 ∈ wcel 1977 ∃*wmo 2459 ∃wrex 2897 Vcvv 3173 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-rex 2902 df-v 3175 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |