MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mopnex Structured version   Visualization version   GIF version

Theorem mopnex 22134
Description: The topology generated by an extended metric can also be generated by a true metric. Thus, "metrizable topologies" can equivalently be defined in terms of metrics or extended metrics. (Contributed by Mario Carneiro, 26-Aug-2015.)
Hypothesis
Ref Expression
mopnex.1 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
mopnex (𝐷 ∈ (∞Met‘𝑋) → ∃𝑑 ∈ (Met‘𝑋)𝐽 = (MetOpen‘𝑑))
Distinct variable groups:   𝐷,𝑑   𝐽,𝑑   𝑋,𝑑

Proof of Theorem mopnex
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1rp 11712 . . 3 1 ∈ ℝ+
2 eqid 2610 . . . 4 (𝑥𝑋, 𝑦𝑋 ↦ if((𝑥𝐷𝑦) ≤ 1, (𝑥𝐷𝑦), 1)) = (𝑥𝑋, 𝑦𝑋 ↦ if((𝑥𝐷𝑦) ≤ 1, (𝑥𝐷𝑦), 1))
32stdbdmet 22131 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 1 ∈ ℝ+) → (𝑥𝑋, 𝑦𝑋 ↦ if((𝑥𝐷𝑦) ≤ 1, (𝑥𝐷𝑦), 1)) ∈ (Met‘𝑋))
41, 3mpan2 703 . 2 (𝐷 ∈ (∞Met‘𝑋) → (𝑥𝑋, 𝑦𝑋 ↦ if((𝑥𝐷𝑦) ≤ 1, (𝑥𝐷𝑦), 1)) ∈ (Met‘𝑋))
5 rpxr 11716 . . . 4 (1 ∈ ℝ+ → 1 ∈ ℝ*)
61, 5ax-mp 5 . . 3 1 ∈ ℝ*
7 0lt1 10429 . . 3 0 < 1
8 mopnex.1 . . . 4 𝐽 = (MetOpen‘𝐷)
92, 8stdbdmopn 22133 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 1 ∈ ℝ* ∧ 0 < 1) → 𝐽 = (MetOpen‘(𝑥𝑋, 𝑦𝑋 ↦ if((𝑥𝐷𝑦) ≤ 1, (𝑥𝐷𝑦), 1))))
106, 7, 9mp3an23 1408 . 2 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 = (MetOpen‘(𝑥𝑋, 𝑦𝑋 ↦ if((𝑥𝐷𝑦) ≤ 1, (𝑥𝐷𝑦), 1))))
11 fveq2 6103 . . . 4 (𝑑 = (𝑥𝑋, 𝑦𝑋 ↦ if((𝑥𝐷𝑦) ≤ 1, (𝑥𝐷𝑦), 1)) → (MetOpen‘𝑑) = (MetOpen‘(𝑥𝑋, 𝑦𝑋 ↦ if((𝑥𝐷𝑦) ≤ 1, (𝑥𝐷𝑦), 1))))
1211eqeq2d 2620 . . 3 (𝑑 = (𝑥𝑋, 𝑦𝑋 ↦ if((𝑥𝐷𝑦) ≤ 1, (𝑥𝐷𝑦), 1)) → (𝐽 = (MetOpen‘𝑑) ↔ 𝐽 = (MetOpen‘(𝑥𝑋, 𝑦𝑋 ↦ if((𝑥𝐷𝑦) ≤ 1, (𝑥𝐷𝑦), 1)))))
1312rspcev 3282 . 2 (((𝑥𝑋, 𝑦𝑋 ↦ if((𝑥𝐷𝑦) ≤ 1, (𝑥𝐷𝑦), 1)) ∈ (Met‘𝑋) ∧ 𝐽 = (MetOpen‘(𝑥𝑋, 𝑦𝑋 ↦ if((𝑥𝐷𝑦) ≤ 1, (𝑥𝐷𝑦), 1)))) → ∃𝑑 ∈ (Met‘𝑋)𝐽 = (MetOpen‘𝑑))
144, 10, 13syl2anc 691 1 (𝐷 ∈ (∞Met‘𝑋) → ∃𝑑 ∈ (Met‘𝑋)𝐽 = (MetOpen‘𝑑))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1475  wcel 1977  wrex 2897  ifcif 4036   class class class wbr 4583  cfv 5804  (class class class)co 6549  cmpt2 6551  0cc0 9815  1c1 9816  *cxr 9952   < clt 9953  cle 9954  +crp 11708  ∞Metcxmt 19552  Metcme 19553  MetOpencmopn 19557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-icc 12053  df-topgen 15927  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-bases 20522
This theorem is referenced by:  methaus  22135
  Copyright terms: Public domain W3C validator