Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mopick Structured version   Visualization version   GIF version

Theorem mopick 2523
 Description: "At most one" picks a variable value, eliminating an existential quantifier. (Contributed by NM, 27-Jan-1997.) (Proof shortened by Wolf Lammen, 17-Sep-2019.)
Assertion
Ref Expression
mopick ((∃*𝑥𝜑 ∧ ∃𝑥(𝜑𝜓)) → (𝜑𝜓))

Proof of Theorem mopick
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 mo2v 2465 . . 3 (∃*𝑥𝜑 ↔ ∃𝑦𝑥(𝜑𝑥 = 𝑦))
2 sp 2041 . . . . 5 (∀𝑥(𝜑𝑥 = 𝑦) → (𝜑𝑥 = 𝑦))
3 pm3.45 875 . . . . . . 7 ((𝜑𝑥 = 𝑦) → ((𝜑𝜓) → (𝑥 = 𝑦𝜓)))
43aleximi 1749 . . . . . 6 (∀𝑥(𝜑𝑥 = 𝑦) → (∃𝑥(𝜑𝜓) → ∃𝑥(𝑥 = 𝑦𝜓)))
5 sb56 2136 . . . . . . 7 (∃𝑥(𝑥 = 𝑦𝜓) ↔ ∀𝑥(𝑥 = 𝑦𝜓))
6 sp 2041 . . . . . . 7 (∀𝑥(𝑥 = 𝑦𝜓) → (𝑥 = 𝑦𝜓))
75, 6sylbi 206 . . . . . 6 (∃𝑥(𝑥 = 𝑦𝜓) → (𝑥 = 𝑦𝜓))
84, 7syl6 34 . . . . 5 (∀𝑥(𝜑𝑥 = 𝑦) → (∃𝑥(𝜑𝜓) → (𝑥 = 𝑦𝜓)))
92, 8syl5d 71 . . . 4 (∀𝑥(𝜑𝑥 = 𝑦) → (∃𝑥(𝜑𝜓) → (𝜑𝜓)))
109exlimiv 1845 . . 3 (∃𝑦𝑥(𝜑𝑥 = 𝑦) → (∃𝑥(𝜑𝜓) → (𝜑𝜓)))
111, 10sylbi 206 . 2 (∃*𝑥𝜑 → (∃𝑥(𝜑𝜓) → (𝜑𝜓)))
1211imp 444 1 ((∃*𝑥𝜑 ∧ ∃𝑥(𝜑𝜓)) → (𝜑𝜓))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383  ∀wal 1473  ∃wex 1695  ∃*wmo 2459 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-12 2034 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-eu 2462  df-mo 2463 This theorem is referenced by:  eupick  2524  mopick2  2528  moexex  2529  morex  3357  imadif  5887  cmetss  22921
 Copyright terms: Public domain W3C validator