Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mooran1 Structured version   Visualization version   GIF version

Theorem mooran1 2515
 Description: "At most one" imports disjunction to conjunction. (Contributed by NM, 5-Apr-2004.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
Assertion
Ref Expression
mooran1 ((∃*𝑥𝜑 ∨ ∃*𝑥𝜓) → ∃*𝑥(𝜑𝜓))

Proof of Theorem mooran1
StepHypRef Expression
1 simpl 472 . . 3 ((𝜑𝜓) → 𝜑)
21moimi 2508 . 2 (∃*𝑥𝜑 → ∃*𝑥(𝜑𝜓))
3 moan 2512 . 2 (∃*𝑥𝜓 → ∃*𝑥(𝜑𝜓))
42, 3jaoi 393 1 ((∃*𝑥𝜑 ∨ ∃*𝑥𝜓) → ∃*𝑥(𝜑𝜓))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∨ wo 382   ∧ wa 383  ∃*wmo 2459 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-12 2034 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-eu 2462  df-mo 2463 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator