MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  moop2 Structured version   Visualization version   GIF version

Theorem moop2 4891
Description: "At most one" property of an ordered pair. (Contributed by NM, 11-Apr-2004.) (Revised by Mario Carneiro, 26-Apr-2015.)
Hypothesis
Ref Expression
moop2.1 𝐵 ∈ V
Assertion
Ref Expression
moop2 ∃*𝑥 𝐴 = ⟨𝐵, 𝑥
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem moop2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqtr2 2630 . . . 4 ((𝐴 = ⟨𝐵, 𝑥⟩ ∧ 𝐴 = ⟨𝑦 / 𝑥𝐵, 𝑦⟩) → ⟨𝐵, 𝑥⟩ = ⟨𝑦 / 𝑥𝐵, 𝑦⟩)
2 moop2.1 . . . . . 6 𝐵 ∈ V
3 vex 3176 . . . . . 6 𝑥 ∈ V
42, 3opth 4871 . . . . 5 (⟨𝐵, 𝑥⟩ = ⟨𝑦 / 𝑥𝐵, 𝑦⟩ ↔ (𝐵 = 𝑦 / 𝑥𝐵𝑥 = 𝑦))
54simprbi 479 . . . 4 (⟨𝐵, 𝑥⟩ = ⟨𝑦 / 𝑥𝐵, 𝑦⟩ → 𝑥 = 𝑦)
61, 5syl 17 . . 3 ((𝐴 = ⟨𝐵, 𝑥⟩ ∧ 𝐴 = ⟨𝑦 / 𝑥𝐵, 𝑦⟩) → 𝑥 = 𝑦)
76gen2 1714 . 2 𝑥𝑦((𝐴 = ⟨𝐵, 𝑥⟩ ∧ 𝐴 = ⟨𝑦 / 𝑥𝐵, 𝑦⟩) → 𝑥 = 𝑦)
8 nfcsb1v 3515 . . . . 5 𝑥𝑦 / 𝑥𝐵
9 nfcv 2751 . . . . 5 𝑥𝑦
108, 9nfop 4356 . . . 4 𝑥𝑦 / 𝑥𝐵, 𝑦
1110nfeq2 2766 . . 3 𝑥 𝐴 = ⟨𝑦 / 𝑥𝐵, 𝑦
12 csbeq1a 3508 . . . . 5 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
13 id 22 . . . . 5 (𝑥 = 𝑦𝑥 = 𝑦)
1412, 13opeq12d 4348 . . . 4 (𝑥 = 𝑦 → ⟨𝐵, 𝑥⟩ = ⟨𝑦 / 𝑥𝐵, 𝑦⟩)
1514eqeq2d 2620 . . 3 (𝑥 = 𝑦 → (𝐴 = ⟨𝐵, 𝑥⟩ ↔ 𝐴 = ⟨𝑦 / 𝑥𝐵, 𝑦⟩))
1611, 15mo4f 2504 . 2 (∃*𝑥 𝐴 = ⟨𝐵, 𝑥⟩ ↔ ∀𝑥𝑦((𝐴 = ⟨𝐵, 𝑥⟩ ∧ 𝐴 = ⟨𝑦 / 𝑥𝐵, 𝑦⟩) → 𝑥 = 𝑦))
177, 16mpbir 220 1 ∃*𝑥 𝐴 = ⟨𝐵, 𝑥
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  wal 1473   = wceq 1475  wcel 1977  ∃*wmo 2459  Vcvv 3173  csb 3499  cop 4131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132
This theorem is referenced by:  euop2  4899
  Copyright terms: Public domain W3C validator