MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  monmatcollpw Structured version   Visualization version   GIF version

Theorem monmatcollpw 20403
Description: The matrix consisting of the coefficients in the polynomial entries of a polynomial matrix having scaled monomials with the same power as entries is the matrix of the coefficients of the monomials or a zero matrix. Generalization of decpmatid 20394 (but requires 𝑅 to be commutative!). (Contributed by AV, 11-Nov-2019.) (Revised by AV, 4-Dec-2019.)
Hypotheses
Ref Expression
monmatcollpw.p 𝑃 = (Poly1𝑅)
monmatcollpw.c 𝐶 = (𝑁 Mat 𝑃)
monmatcollpw.a 𝐴 = (𝑁 Mat 𝑅)
monmatcollpw.k 𝐾 = (Base‘𝐴)
monmatcollpw.0 0 = (0g𝐴)
monmatcollpw.e = (.g‘(mulGrp‘𝑃))
monmatcollpw.x 𝑋 = (var1𝑅)
monmatcollpw.m · = ( ·𝑠𝐶)
monmatcollpw.t 𝑇 = (𝑁 matToPolyMat 𝑅)
Assertion
Ref Expression
monmatcollpw (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → (((𝐿 𝑋) · (𝑇𝑀)) decompPMat 𝐼) = if(𝐼 = 𝐿, 𝑀, 0 ))

Proof of Theorem monmatcollpw
Dummy variables 𝑖 𝑗 𝑙 𝑥 𝑦 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 786 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → 𝑁 ∈ Fin)
2 crngring 18381 . . . . . 6 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
3 monmatcollpw.p . . . . . . 7 𝑃 = (Poly1𝑅)
43ply1ring 19439 . . . . . 6 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
52, 4syl 17 . . . . 5 (𝑅 ∈ CRing → 𝑃 ∈ Ring)
65ad2antlr 759 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → 𝑃 ∈ Ring)
72adantl 481 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑅 ∈ Ring)
8 simp2 1055 . . . . . 6 ((𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0) → 𝐿 ∈ ℕ0)
9 monmatcollpw.x . . . . . . 7 𝑋 = (var1𝑅)
10 eqid 2610 . . . . . . 7 (mulGrp‘𝑃) = (mulGrp‘𝑃)
11 monmatcollpw.e . . . . . . 7 = (.g‘(mulGrp‘𝑃))
12 eqid 2610 . . . . . . 7 (Base‘𝑃) = (Base‘𝑃)
133, 9, 10, 11, 12ply1moncl 19462 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐿 ∈ ℕ0) → (𝐿 𝑋) ∈ (Base‘𝑃))
147, 8, 13syl2an 493 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → (𝐿 𝑋) ∈ (Base‘𝑃))
152anim2i 591 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
16 simp1 1054 . . . . . . . 8 ((𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0) → 𝑀𝐾)
1715, 16anim12i 588 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑀𝐾))
18 df-3an 1033 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐾) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑀𝐾))
1917, 18sylibr 223 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐾))
20 monmatcollpw.t . . . . . . 7 𝑇 = (𝑁 matToPolyMat 𝑅)
21 monmatcollpw.a . . . . . . 7 𝐴 = (𝑁 Mat 𝑅)
22 monmatcollpw.k . . . . . . 7 𝐾 = (Base‘𝐴)
23 monmatcollpw.c . . . . . . 7 𝐶 = (𝑁 Mat 𝑃)
2420, 21, 22, 3, 23mat2pmatbas 20350 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐾) → (𝑇𝑀) ∈ (Base‘𝐶))
2519, 24syl 17 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → (𝑇𝑀) ∈ (Base‘𝐶))
2614, 25jca 553 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → ((𝐿 𝑋) ∈ (Base‘𝑃) ∧ (𝑇𝑀) ∈ (Base‘𝐶)))
27 eqid 2610 . . . . 5 (Base‘𝐶) = (Base‘𝐶)
28 monmatcollpw.m . . . . 5 · = ( ·𝑠𝐶)
2912, 23, 27, 28matvscl 20056 . . . 4 (((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring) ∧ ((𝐿 𝑋) ∈ (Base‘𝑃) ∧ (𝑇𝑀) ∈ (Base‘𝐶))) → ((𝐿 𝑋) · (𝑇𝑀)) ∈ (Base‘𝐶))
301, 6, 26, 29syl21anc 1317 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → ((𝐿 𝑋) · (𝑇𝑀)) ∈ (Base‘𝐶))
31 simpr3 1062 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → 𝐼 ∈ ℕ0)
3223, 27decpmatval 20389 . . 3 ((((𝐿 𝑋) · (𝑇𝑀)) ∈ (Base‘𝐶) ∧ 𝐼 ∈ ℕ0) → (((𝐿 𝑋) · (𝑇𝑀)) decompPMat 𝐼) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖((𝐿 𝑋) · (𝑇𝑀))𝑗))‘𝐼)))
3330, 31, 32syl2anc 691 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → (((𝐿 𝑋) · (𝑇𝑀)) decompPMat 𝐼) = (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖((𝐿 𝑋) · (𝑇𝑀))𝑗))‘𝐼)))
3463ad2ant1 1075 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → 𝑃 ∈ Ring)
35263ad2ant1 1075 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → ((𝐿 𝑋) ∈ (Base‘𝑃) ∧ (𝑇𝑀) ∈ (Base‘𝐶)))
36 3simpc 1053 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → (𝑖𝑁𝑗𝑁))
37 eqid 2610 . . . . . . . 8 (.r𝑃) = (.r𝑃)
3823, 27, 12, 28, 37matvscacell 20061 . . . . . . 7 ((𝑃 ∈ Ring ∧ ((𝐿 𝑋) ∈ (Base‘𝑃) ∧ (𝑇𝑀) ∈ (Base‘𝐶)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖((𝐿 𝑋) · (𝑇𝑀))𝑗) = ((𝐿 𝑋)(.r𝑃)(𝑖(𝑇𝑀)𝑗)))
3934, 35, 36, 38syl3anc 1318 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → (𝑖((𝐿 𝑋) · (𝑇𝑀))𝑗) = ((𝐿 𝑋)(.r𝑃)(𝑖(𝑇𝑀)𝑗)))
4039fveq2d 6107 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → (coe1‘(𝑖((𝐿 𝑋) · (𝑇𝑀))𝑗)) = (coe1‘((𝐿 𝑋)(.r𝑃)(𝑖(𝑇𝑀)𝑗))))
4140fveq1d 6105 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘(𝑖((𝐿 𝑋) · (𝑇𝑀))𝑗))‘𝐼) = ((coe1‘((𝐿 𝑋)(.r𝑃)(𝑖(𝑇𝑀)𝑗)))‘𝐼))
4216anim2i 591 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀𝐾))
43 df-3an 1033 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐾) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑀𝐾))
4442, 43sylibr 223 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐾))
45443ad2ant1 1075 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐾))
46 eqid 2610 . . . . . . . . . 10 (algSc‘𝑃) = (algSc‘𝑃)
4720, 21, 22, 3, 46mat2pmatvalel 20349 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐾) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑇𝑀)𝑗) = ((algSc‘𝑃)‘(𝑖𝑀𝑗)))
4845, 36, 47syl2anc 691 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → (𝑖(𝑇𝑀)𝑗) = ((algSc‘𝑃)‘(𝑖𝑀𝑗)))
4948oveq2d 6565 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → ((𝐿 𝑋)(.r𝑃)(𝑖(𝑇𝑀)𝑗)) = ((𝐿 𝑋)(.r𝑃)((algSc‘𝑃)‘(𝑖𝑀𝑗))))
503ply1assa 19390 . . . . . . . . . 10 (𝑅 ∈ CRing → 𝑃 ∈ AssAlg)
5150ad2antlr 759 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → 𝑃 ∈ AssAlg)
52513ad2ant1 1075 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → 𝑃 ∈ AssAlg)
53 eqid 2610 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
54 eqid 2610 . . . . . . . . . 10 (Base‘𝐴) = (Base‘𝐴)
55 simp2 1055 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → 𝑖𝑁)
56 simp3 1056 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → 𝑗𝑁)
5722eleq2i 2680 . . . . . . . . . . . . . 14 (𝑀𝐾𝑀 ∈ (Base‘𝐴))
5857biimpi 205 . . . . . . . . . . . . 13 (𝑀𝐾𝑀 ∈ (Base‘𝐴))
59583ad2ant1 1075 . . . . . . . . . . . 12 ((𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0) → 𝑀 ∈ (Base‘𝐴))
6059adantl 481 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → 𝑀 ∈ (Base‘𝐴))
61603ad2ant1 1075 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → 𝑀 ∈ (Base‘𝐴))
6221, 53, 54, 55, 56, 61matecld 20051 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → (𝑖𝑀𝑗) ∈ (Base‘𝑅))
633ply1sca 19444 . . . . . . . . . . . . . 14 (𝑅 ∈ CRing → 𝑅 = (Scalar‘𝑃))
6463adantl 481 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑅 = (Scalar‘𝑃))
6564eqcomd 2616 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (Scalar‘𝑃) = 𝑅)
6665fveq2d 6107 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (Base‘(Scalar‘𝑃)) = (Base‘𝑅))
6766adantr 480 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → (Base‘(Scalar‘𝑃)) = (Base‘𝑅))
68673ad2ant1 1075 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → (Base‘(Scalar‘𝑃)) = (Base‘𝑅))
6962, 68eleqtrrd 2691 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → (𝑖𝑀𝑗) ∈ (Base‘(Scalar‘𝑃)))
70143ad2ant1 1075 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → (𝐿 𝑋) ∈ (Base‘𝑃))
71 eqid 2610 . . . . . . . . 9 (Scalar‘𝑃) = (Scalar‘𝑃)
72 eqid 2610 . . . . . . . . 9 (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃))
73 eqid 2610 . . . . . . . . 9 ( ·𝑠𝑃) = ( ·𝑠𝑃)
7446, 71, 72, 12, 37, 73asclmul2 19161 . . . . . . . 8 ((𝑃 ∈ AssAlg ∧ (𝑖𝑀𝑗) ∈ (Base‘(Scalar‘𝑃)) ∧ (𝐿 𝑋) ∈ (Base‘𝑃)) → ((𝐿 𝑋)(.r𝑃)((algSc‘𝑃)‘(𝑖𝑀𝑗))) = ((𝑖𝑀𝑗)( ·𝑠𝑃)(𝐿 𝑋)))
7552, 69, 70, 74syl3anc 1318 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → ((𝐿 𝑋)(.r𝑃)((algSc‘𝑃)‘(𝑖𝑀𝑗))) = ((𝑖𝑀𝑗)( ·𝑠𝑃)(𝐿 𝑋)))
7649, 75eqtrd 2644 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → ((𝐿 𝑋)(.r𝑃)(𝑖(𝑇𝑀)𝑗)) = ((𝑖𝑀𝑗)( ·𝑠𝑃)(𝐿 𝑋)))
7776fveq2d 6107 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → (coe1‘((𝐿 𝑋)(.r𝑃)(𝑖(𝑇𝑀)𝑗))) = (coe1‘((𝑖𝑀𝑗)( ·𝑠𝑃)(𝐿 𝑋))))
7877fveq1d 6105 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘((𝐿 𝑋)(.r𝑃)(𝑖(𝑇𝑀)𝑗)))‘𝐼) = ((coe1‘((𝑖𝑀𝑗)( ·𝑠𝑃)(𝐿 𝑋)))‘𝐼))
792ad2antlr 759 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → 𝑅 ∈ Ring)
80793ad2ant1 1075 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → 𝑅 ∈ Ring)
81 simp1r2 1151 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → 𝐿 ∈ ℕ0)
82 eqid 2610 . . . . . . 7 (0g𝑅) = (0g𝑅)
8382, 53, 3, 9, 73, 10, 11coe1tm 19464 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑖𝑀𝑗) ∈ (Base‘𝑅) ∧ 𝐿 ∈ ℕ0) → (coe1‘((𝑖𝑀𝑗)( ·𝑠𝑃)(𝐿 𝑋))) = (𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅))))
8480, 62, 81, 83syl3anc 1318 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → (coe1‘((𝑖𝑀𝑗)( ·𝑠𝑃)(𝐿 𝑋))) = (𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅))))
8584fveq1d 6105 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘((𝑖𝑀𝑗)( ·𝑠𝑃)(𝐿 𝑋)))‘𝐼) = ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)))‘𝐼))
8641, 78, 853eqtrd 2648 . . 3 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘(𝑖((𝐿 𝑋) · (𝑇𝑀))𝑗))‘𝐼) = ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)))‘𝐼))
8786mpt2eq3dva 6617 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖((𝐿 𝑋) · (𝑇𝑀))𝑗))‘𝐼)) = (𝑖𝑁, 𝑗𝑁 ↦ ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)))‘𝐼)))
88 monmatcollpw.0 . . . . . . . . 9 0 = (0g𝐴)
8915adantr 480 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
9089adantr 480 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ (𝑥𝑁𝑦𝑁)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
9121, 82mat0op 20044 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (0g𝐴) = (𝑧𝑁, 𝑤𝑁 ↦ (0g𝑅)))
9290, 91syl 17 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ (𝑥𝑁𝑦𝑁)) → (0g𝐴) = (𝑧𝑁, 𝑤𝑁 ↦ (0g𝑅)))
9388, 92syl5eq 2656 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ (𝑥𝑁𝑦𝑁)) → 0 = (𝑧𝑁, 𝑤𝑁 ↦ (0g𝑅)))
94 eqidd 2611 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ (𝑥𝑁𝑦𝑁)) ∧ (𝑧 = 𝑥𝑤 = 𝑦)) → (0g𝑅) = (0g𝑅))
95 simprl 790 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ (𝑥𝑁𝑦𝑁)) → 𝑥𝑁)
96 simprr 792 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ (𝑥𝑁𝑦𝑁)) → 𝑦𝑁)
97 fvex 6113 . . . . . . . . 9 (0g𝑅) ∈ V
9897a1i 11 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ (𝑥𝑁𝑦𝑁)) → (0g𝑅) ∈ V)
9993, 94, 95, 96, 98ovmpt2d 6686 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ (𝑥𝑁𝑦𝑁)) → (𝑥 0 𝑦) = (0g𝑅))
10099eqcomd 2616 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ (𝑥𝑁𝑦𝑁)) → (0g𝑅) = (𝑥 0 𝑦))
101100ifeq2d 4055 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ (𝑥𝑁𝑦𝑁)) → if(𝐼 = 𝐿, (𝑥𝑀𝑦), (0g𝑅)) = if(𝐼 = 𝐿, (𝑥𝑀𝑦), (𝑥 0 𝑦)))
102 eqidd 2611 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ (𝑥𝑁𝑦𝑁)) → (𝑖𝑁, 𝑗𝑁 ↦ ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)))‘𝐼)) = (𝑖𝑁, 𝑗𝑁 ↦ ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)))‘𝐼)))
103 oveq12 6558 . . . . . . . . . 10 ((𝑖 = 𝑥𝑗 = 𝑦) → (𝑖𝑀𝑗) = (𝑥𝑀𝑦))
104103ifeq1d 4054 . . . . . . . . 9 ((𝑖 = 𝑥𝑗 = 𝑦) → if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)) = if(𝑙 = 𝐿, (𝑥𝑀𝑦), (0g𝑅)))
105104mpteq2dv 4673 . . . . . . . 8 ((𝑖 = 𝑥𝑗 = 𝑦) → (𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅))) = (𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑥𝑀𝑦), (0g𝑅))))
106105fveq1d 6105 . . . . . . 7 ((𝑖 = 𝑥𝑗 = 𝑦) → ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)))‘𝐼) = ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑥𝑀𝑦), (0g𝑅)))‘𝐼))
107 eqidd 2611 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ (𝑥𝑁𝑦𝑁)) → (𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑥𝑀𝑦), (0g𝑅))) = (𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑥𝑀𝑦), (0g𝑅))))
108 eqeq1 2614 . . . . . . . . . 10 (𝑙 = 𝐼 → (𝑙 = 𝐿𝐼 = 𝐿))
109108ifbid 4058 . . . . . . . . 9 (𝑙 = 𝐼 → if(𝑙 = 𝐿, (𝑥𝑀𝑦), (0g𝑅)) = if(𝐼 = 𝐿, (𝑥𝑀𝑦), (0g𝑅)))
110109adantl 481 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ (𝑥𝑁𝑦𝑁)) ∧ 𝑙 = 𝐼) → if(𝑙 = 𝐿, (𝑥𝑀𝑦), (0g𝑅)) = if(𝐼 = 𝐿, (𝑥𝑀𝑦), (0g𝑅)))
11131adantr 480 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ (𝑥𝑁𝑦𝑁)) → 𝐼 ∈ ℕ0)
112 ovex 6577 . . . . . . . . . 10 (𝑥𝑀𝑦) ∈ V
113112, 97ifex 4106 . . . . . . . . 9 if(𝐼 = 𝐿, (𝑥𝑀𝑦), (0g𝑅)) ∈ V
114113a1i 11 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ (𝑥𝑁𝑦𝑁)) → if(𝐼 = 𝐿, (𝑥𝑀𝑦), (0g𝑅)) ∈ V)
115107, 110, 111, 114fvmptd 6197 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ (𝑥𝑁𝑦𝑁)) → ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑥𝑀𝑦), (0g𝑅)))‘𝐼) = if(𝐼 = 𝐿, (𝑥𝑀𝑦), (0g𝑅)))
116106, 115sylan9eqr 2666 . . . . . 6 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ (𝑥𝑁𝑦𝑁)) ∧ (𝑖 = 𝑥𝑗 = 𝑦)) → ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)))‘𝐼) = if(𝐼 = 𝐿, (𝑥𝑀𝑦), (0g𝑅)))
117102, 116, 95, 96, 114ovmpt2d 6686 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ (𝑥𝑁𝑦𝑁)) → (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)))‘𝐼))𝑦) = if(𝐼 = 𝐿, (𝑥𝑀𝑦), (0g𝑅)))
118 ifov 6638 . . . . . 6 (𝑥if(𝐼 = 𝐿, 𝑀, 0 )𝑦) = if(𝐼 = 𝐿, (𝑥𝑀𝑦), (𝑥 0 𝑦))
119118a1i 11 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ (𝑥𝑁𝑦𝑁)) → (𝑥if(𝐼 = 𝐿, 𝑀, 0 )𝑦) = if(𝐼 = 𝐿, (𝑥𝑀𝑦), (𝑥 0 𝑦)))
120101, 117, 1193eqtr4d 2654 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ (𝑥𝑁𝑦𝑁)) → (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)))‘𝐼))𝑦) = (𝑥if(𝐼 = 𝐿, 𝑀, 0 )𝑦))
121120ralrimivva 2954 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → ∀𝑥𝑁𝑦𝑁 (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)))‘𝐼))𝑦) = (𝑥if(𝐼 = 𝐿, 𝑀, 0 )𝑦))
122 simplr 788 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → 𝑅 ∈ CRing)
123 eqidd 2611 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → (𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅))) = (𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅))))
124108ifbid 4058 . . . . . . . 8 (𝑙 = 𝐼 → if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)) = if(𝐼 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)))
125124adantl 481 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑙 = 𝐼) → if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)) = if(𝐼 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)))
126313ad2ant1 1075 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → 𝐼 ∈ ℕ0)
12753, 82ring0cl 18392 . . . . . . . . . . 11 (𝑅 ∈ Ring → (0g𝑅) ∈ (Base‘𝑅))
1287, 127syl 17 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (0g𝑅) ∈ (Base‘𝑅))
129128adantr 480 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → (0g𝑅) ∈ (Base‘𝑅))
1301293ad2ant1 1075 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → (0g𝑅) ∈ (Base‘𝑅))
13162, 130ifcld 4081 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → if(𝐼 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)) ∈ (Base‘𝑅))
132123, 125, 126, 131fvmptd 6197 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)))‘𝐼) = if(𝐼 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)))
133132, 131eqeltrd 2688 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) ∧ 𝑖𝑁𝑗𝑁) → ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)))‘𝐼) ∈ (Base‘𝑅))
13421, 53, 22, 1, 122, 133matbas2d 20048 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → (𝑖𝑁, 𝑗𝑁 ↦ ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)))‘𝐼)) ∈ 𝐾)
13560, 57sylibr 223 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → 𝑀𝐾)
13621matring 20068 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
13722, 88ring0cl 18392 . . . . . . 7 (𝐴 ∈ Ring → 0𝐾)
13815, 136, 1373syl 18 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 0𝐾)
139138adantr 480 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → 0𝐾)
140135, 139ifcld 4081 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → if(𝐼 = 𝐿, 𝑀, 0 ) ∈ 𝐾)
14121, 22eqmat 20049 . . . 4 (((𝑖𝑁, 𝑗𝑁 ↦ ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)))‘𝐼)) ∈ 𝐾 ∧ if(𝐼 = 𝐿, 𝑀, 0 ) ∈ 𝐾) → ((𝑖𝑁, 𝑗𝑁 ↦ ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)))‘𝐼)) = if(𝐼 = 𝐿, 𝑀, 0 ) ↔ ∀𝑥𝑁𝑦𝑁 (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)))‘𝐼))𝑦) = (𝑥if(𝐼 = 𝐿, 𝑀, 0 )𝑦)))
142134, 140, 141syl2anc 691 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → ((𝑖𝑁, 𝑗𝑁 ↦ ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)))‘𝐼)) = if(𝐼 = 𝐿, 𝑀, 0 ) ↔ ∀𝑥𝑁𝑦𝑁 (𝑥(𝑖𝑁, 𝑗𝑁 ↦ ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)))‘𝐼))𝑦) = (𝑥if(𝐼 = 𝐿, 𝑀, 0 )𝑦)))
143121, 142mpbird 246 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → (𝑖𝑁, 𝑗𝑁 ↦ ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 𝐿, (𝑖𝑀𝑗), (0g𝑅)))‘𝐼)) = if(𝐼 = 𝐿, 𝑀, 0 ))
14433, 87, 1433eqtrd 2648 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝐼 ∈ ℕ0)) → (((𝐿 𝑋) · (𝑇𝑀)) decompPMat 𝐼) = if(𝐼 = 𝐿, 𝑀, 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  Vcvv 3173  ifcif 4036  cmpt 4643  cfv 5804  (class class class)co 6549  cmpt2 6551  Fincfn 7841  0cn0 11169  Basecbs 15695  .rcmulr 15769  Scalarcsca 15771   ·𝑠 cvsca 15772  0gc0g 15923  .gcmg 17363  mulGrpcmgp 18312  Ringcrg 18370  CRingccrg 18371  AssAlgcasa 19130  algSccascl 19132  var1cv1 19367  Poly1cpl1 19368  coe1cco1 19369   Mat cmat 20032   matToPolyMat cmat2pmat 20328   decompPMat cdecpmat 20386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-ot 4134  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-ofr 6796  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-sup 8231  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-fz 12198  df-fzo 12335  df-seq 12664  df-hash 12980  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-hom 15793  df-cco 15794  df-0g 15925  df-gsum 15926  df-prds 15931  df-pws 15933  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mhm 17158  df-submnd 17159  df-grp 17248  df-minusg 17249  df-sbg 17250  df-mulg 17364  df-subg 17414  df-ghm 17481  df-cntz 17573  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-cring 18373  df-subrg 18601  df-lmod 18688  df-lss 18754  df-sra 18993  df-rgmod 18994  df-assa 19133  df-ascl 19135  df-psr 19177  df-mvr 19178  df-mpl 19179  df-opsr 19181  df-psr1 19371  df-vr1 19372  df-ply1 19373  df-coe1 19374  df-dsmm 19895  df-frlm 19910  df-mamu 20009  df-mat 20033  df-mat2pmat 20331  df-decpmat 20387
This theorem is referenced by:  monmat2matmon  20448
  Copyright terms: Public domain W3C validator