MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  monmat2matmon Structured version   Visualization version   GIF version

Theorem monmat2matmon 20448
Description: The transformation of a polynomial matrix having scaled monomials with the same power as entries into a scaled monomial as a polynomial over matrices. (Contributed by AV, 11-Nov-2019.) (Revised by AV, 7-Dec-2019.)
Hypotheses
Ref Expression
monmat2matmon.p 𝑃 = (Poly1𝑅)
monmat2matmon.c 𝐶 = (𝑁 Mat 𝑃)
monmat2matmon.b 𝐵 = (Base‘𝐶)
monmat2matmon.m1 = ( ·𝑠𝑄)
monmat2matmon.e1 = (.g‘(mulGrp‘𝑄))
monmat2matmon.x 𝑋 = (var1𝐴)
monmat2matmon.a 𝐴 = (𝑁 Mat 𝑅)
monmat2matmon.k 𝐾 = (Base‘𝐴)
monmat2matmon.q 𝑄 = (Poly1𝐴)
monmat2matmon.i 𝐼 = (𝑁 pMatToMatPoly 𝑅)
monmat2matmon.e2 𝐸 = (.g‘(mulGrp‘𝑃))
monmat2matmon.y 𝑌 = (var1𝑅)
monmat2matmon.m2 · = ( ·𝑠𝐶)
monmat2matmon.t 𝑇 = (𝑁 matToPolyMat 𝑅)
Assertion
Ref Expression
monmat2matmon (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) → (𝐼‘((𝐿𝐸𝑌) · (𝑇𝑀))) = (𝑀 (𝐿 𝑋)))

Proof of Theorem monmat2matmon
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 crngring 18381 . . 3 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
2 simpll 786 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) → 𝑁 ∈ Fin)
3 simplr 788 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) → 𝑅 ∈ Ring)
4 monmat2matmon.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
5 monmat2matmon.k . . . . 5 𝐾 = (Base‘𝐴)
6 monmat2matmon.t . . . . 5 𝑇 = (𝑁 matToPolyMat 𝑅)
7 monmat2matmon.p . . . . 5 𝑃 = (Poly1𝑅)
8 monmat2matmon.c . . . . 5 𝐶 = (𝑁 Mat 𝑃)
9 monmat2matmon.b . . . . 5 𝐵 = (Base‘𝐶)
10 monmat2matmon.m2 . . . . 5 · = ( ·𝑠𝐶)
11 monmat2matmon.e2 . . . . 5 𝐸 = (.g‘(mulGrp‘𝑃))
12 monmat2matmon.y . . . . 5 𝑌 = (var1𝑅)
134, 5, 6, 7, 8, 9, 10, 11, 12mat2pmatscmxcl 20364 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) → ((𝐿𝐸𝑌) · (𝑇𝑀)) ∈ 𝐵)
14 monmat2matmon.m1 . . . . 5 = ( ·𝑠𝑄)
15 monmat2matmon.e1 . . . . 5 = (.g‘(mulGrp‘𝑄))
16 monmat2matmon.x . . . . 5 𝑋 = (var1𝐴)
17 monmat2matmon.q . . . . 5 𝑄 = (Poly1𝐴)
18 monmat2matmon.i . . . . 5 𝐼 = (𝑁 pMatToMatPoly 𝑅)
197, 8, 9, 14, 15, 16, 4, 17, 18pm2mpfval 20420 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ ((𝐿𝐸𝑌) · (𝑇𝑀)) ∈ 𝐵) → (𝐼‘((𝐿𝐸𝑌) · (𝑇𝑀))) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((((𝐿𝐸𝑌) · (𝑇𝑀)) decompPMat 𝑘) (𝑘 𝑋)))))
202, 3, 13, 19syl3anc 1318 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) → (𝐼‘((𝐿𝐸𝑌) · (𝑇𝑀))) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((((𝐿𝐸𝑌) · (𝑇𝑀)) decompPMat 𝑘) (𝑘 𝑋)))))
211, 20sylanl2 681 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) → (𝐼‘((𝐿𝐸𝑌) · (𝑇𝑀))) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((((𝐿𝐸𝑌) · (𝑇𝑀)) decompPMat 𝑘) (𝑘 𝑋)))))
22 simpll 786 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing))
23 simpr 476 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) → (𝑀𝐾𝐿 ∈ ℕ0))
2423anim1i 590 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → ((𝑀𝐾𝐿 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0))
25 df-3an 1033 . . . . . . . . 9 ((𝑀𝐾𝐿 ∈ ℕ0𝑘 ∈ ℕ0) ↔ ((𝑀𝐾𝐿 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0))
2624, 25sylibr 223 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → (𝑀𝐾𝐿 ∈ ℕ0𝑘 ∈ ℕ0))
27 eqid 2610 . . . . . . . . 9 (0g𝐴) = (0g𝐴)
287, 8, 4, 5, 27, 11, 12, 10, 6monmatcollpw 20403 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝑘 ∈ ℕ0)) → (((𝐿𝐸𝑌) · (𝑇𝑀)) decompPMat 𝑘) = if(𝑘 = 𝐿, 𝑀, (0g𝐴)))
2922, 26, 28syl2anc 691 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → (((𝐿𝐸𝑌) · (𝑇𝑀)) decompPMat 𝑘) = if(𝑘 = 𝐿, 𝑀, (0g𝐴)))
3029oveq1d 6564 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → ((((𝐿𝐸𝑌) · (𝑇𝑀)) decompPMat 𝑘) (𝑘 𝑋)) = (if(𝑘 = 𝐿, 𝑀, (0g𝐴)) (𝑘 𝑋)))
311a1i 11 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → (𝑅 ∈ CRing → 𝑅 ∈ Ring))
3231anim2d 587 . . . . . . . . 9 (𝑘 ∈ ℕ0 → ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring)))
3332anim1d 586 . . . . . . . 8 (𝑘 ∈ ℕ0 → (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0))))
3433imdistanri 723 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0))
35 ovif 6635 . . . . . . . 8 (if(𝑘 = 𝐿, 𝑀, (0g𝐴)) (𝑘 𝑋)) = if(𝑘 = 𝐿, (𝑀 (𝑘 𝑋)), ((0g𝐴) (𝑘 𝑋)))
364matring 20068 . . . . . . . . . . . . . 14 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
3717ply1sca 19444 . . . . . . . . . . . . . 14 (𝐴 ∈ Ring → 𝐴 = (Scalar‘𝑄))
3836, 37syl 17 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 = (Scalar‘𝑄))
3938ad2antrr 758 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → 𝐴 = (Scalar‘𝑄))
4039fveq2d 6107 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → (0g𝐴) = (0g‘(Scalar‘𝑄)))
4140oveq1d 6564 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → ((0g𝐴) (𝑘 𝑋)) = ((0g‘(Scalar‘𝑄)) (𝑘 𝑋)))
4217ply1lmod 19443 . . . . . . . . . . . . 13 (𝐴 ∈ Ring → 𝑄 ∈ LMod)
4336, 42syl 17 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑄 ∈ LMod)
4443ad2antrr 758 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → 𝑄 ∈ LMod)
4517ply1ring 19439 . . . . . . . . . . . . . . 15 (𝐴 ∈ Ring → 𝑄 ∈ Ring)
4636, 45syl 17 . . . . . . . . . . . . . 14 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑄 ∈ Ring)
47 eqid 2610 . . . . . . . . . . . . . . 15 (mulGrp‘𝑄) = (mulGrp‘𝑄)
4847ringmgp 18376 . . . . . . . . . . . . . 14 (𝑄 ∈ Ring → (mulGrp‘𝑄) ∈ Mnd)
4946, 48syl 17 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (mulGrp‘𝑄) ∈ Mnd)
5049ad2antrr 758 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → (mulGrp‘𝑄) ∈ Mnd)
51 simpr 476 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
52 eqid 2610 . . . . . . . . . . . . . . 15 (Base‘𝑄) = (Base‘𝑄)
5316, 17, 52vr1cl 19408 . . . . . . . . . . . . . 14 (𝐴 ∈ Ring → 𝑋 ∈ (Base‘𝑄))
5436, 53syl 17 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑋 ∈ (Base‘𝑄))
5554ad2antrr 758 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → 𝑋 ∈ (Base‘𝑄))
5647, 52mgpbas 18318 . . . . . . . . . . . . 13 (Base‘𝑄) = (Base‘(mulGrp‘𝑄))
5756, 15mulgnn0cl 17381 . . . . . . . . . . . 12 (((mulGrp‘𝑄) ∈ Mnd ∧ 𝑘 ∈ ℕ0𝑋 ∈ (Base‘𝑄)) → (𝑘 𝑋) ∈ (Base‘𝑄))
5850, 51, 55, 57syl3anc 1318 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → (𝑘 𝑋) ∈ (Base‘𝑄))
59 eqid 2610 . . . . . . . . . . . 12 (Scalar‘𝑄) = (Scalar‘𝑄)
60 eqid 2610 . . . . . . . . . . . 12 (0g‘(Scalar‘𝑄)) = (0g‘(Scalar‘𝑄))
61 eqid 2610 . . . . . . . . . . . 12 (0g𝑄) = (0g𝑄)
6252, 59, 14, 60, 61lmod0vs 18719 . . . . . . . . . . 11 ((𝑄 ∈ LMod ∧ (𝑘 𝑋) ∈ (Base‘𝑄)) → ((0g‘(Scalar‘𝑄)) (𝑘 𝑋)) = (0g𝑄))
6344, 58, 62syl2anc 691 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → ((0g‘(Scalar‘𝑄)) (𝑘 𝑋)) = (0g𝑄))
6441, 63eqtrd 2644 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → ((0g𝐴) (𝑘 𝑋)) = (0g𝑄))
6564ifeq2d 4055 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → if(𝑘 = 𝐿, (𝑀 (𝑘 𝑋)), ((0g𝐴) (𝑘 𝑋))) = if(𝑘 = 𝐿, (𝑀 (𝑘 𝑋)), (0g𝑄)))
6635, 65syl5eq 2656 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → (if(𝑘 = 𝐿, 𝑀, (0g𝐴)) (𝑘 𝑋)) = if(𝑘 = 𝐿, (𝑀 (𝑘 𝑋)), (0g𝑄)))
6734, 66syl 17 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → (if(𝑘 = 𝐿, 𝑀, (0g𝐴)) (𝑘 𝑋)) = if(𝑘 = 𝐿, (𝑀 (𝑘 𝑋)), (0g𝑄)))
6830, 67eqtrd 2644 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → ((((𝐿𝐸𝑌) · (𝑇𝑀)) decompPMat 𝑘) (𝑘 𝑋)) = if(𝑘 = 𝐿, (𝑀 (𝑘 𝑋)), (0g𝑄)))
6968mpteq2dva 4672 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) → (𝑘 ∈ ℕ0 ↦ ((((𝐿𝐸𝑌) · (𝑇𝑀)) decompPMat 𝑘) (𝑘 𝑋))) = (𝑘 ∈ ℕ0 ↦ if(𝑘 = 𝐿, (𝑀 (𝑘 𝑋)), (0g𝑄))))
7069oveq2d 6565 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) → (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((((𝐿𝐸𝑌) · (𝑇𝑀)) decompPMat 𝑘) (𝑘 𝑋)))) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ if(𝑘 = 𝐿, (𝑀 (𝑘 𝑋)), (0g𝑄)))))
71 ringmnd 18379 . . . . . . 7 (𝑄 ∈ Ring → 𝑄 ∈ Mnd)
7246, 71syl 17 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑄 ∈ Mnd)
7372adantr 480 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) → 𝑄 ∈ Mnd)
74 nn0ex 11175 . . . . . 6 0 ∈ V
7574a1i 11 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) → ℕ0 ∈ V)
76 simprr 792 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) → 𝐿 ∈ ℕ0)
77 eqid 2610 . . . . 5 (𝑘 ∈ ℕ0 ↦ if(𝑘 = 𝐿, (𝑀 (𝑘 𝑋)), (0g𝑄))) = (𝑘 ∈ ℕ0 ↦ if(𝑘 = 𝐿, (𝑀 (𝑘 𝑋)), (0g𝑄)))
7838fveq2d 6107 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (Base‘𝐴) = (Base‘(Scalar‘𝑄)))
795, 78syl5eq 2656 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐾 = (Base‘(Scalar‘𝑄)))
8079eleq2d 2673 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑀𝐾𝑀 ∈ (Base‘(Scalar‘𝑄))))
8180biimpcd 238 . . . . . . . . . 10 (𝑀𝐾 → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑀 ∈ (Base‘(Scalar‘𝑄))))
8281adantr 480 . . . . . . . . 9 ((𝑀𝐾𝐿 ∈ ℕ0) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑀 ∈ (Base‘(Scalar‘𝑄))))
8382impcom 445 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) → 𝑀 ∈ (Base‘(Scalar‘𝑄)))
8483adantr 480 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → 𝑀 ∈ (Base‘(Scalar‘𝑄)))
85 eqid 2610 . . . . . . . 8 (Base‘(Scalar‘𝑄)) = (Base‘(Scalar‘𝑄))
8652, 59, 14, 85lmodvscl 18703 . . . . . . 7 ((𝑄 ∈ LMod ∧ 𝑀 ∈ (Base‘(Scalar‘𝑄)) ∧ (𝑘 𝑋) ∈ (Base‘𝑄)) → (𝑀 (𝑘 𝑋)) ∈ (Base‘𝑄))
8744, 84, 58, 86syl3anc 1318 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → (𝑀 (𝑘 𝑋)) ∈ (Base‘𝑄))
8887ralrimiva 2949 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) → ∀𝑘 ∈ ℕ0 (𝑀 (𝑘 𝑋)) ∈ (Base‘𝑄))
8961, 73, 75, 76, 77, 88gsummpt1n0 18187 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) → (𝑄 Σg (𝑘 ∈ ℕ0 ↦ if(𝑘 = 𝐿, (𝑀 (𝑘 𝑋)), (0g𝑄)))) = 𝐿 / 𝑘(𝑀 (𝑘 𝑋)))
901, 89sylanl2 681 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) → (𝑄 Σg (𝑘 ∈ ℕ0 ↦ if(𝑘 = 𝐿, (𝑀 (𝑘 𝑋)), (0g𝑄)))) = 𝐿 / 𝑘(𝑀 (𝑘 𝑋)))
9170, 90eqtrd 2644 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) → (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((((𝐿𝐸𝑌) · (𝑇𝑀)) decompPMat 𝑘) (𝑘 𝑋)))) = 𝐿 / 𝑘(𝑀 (𝑘 𝑋)))
92 csbov2g 6589 . . . 4 (𝐿 ∈ ℕ0𝐿 / 𝑘(𝑀 (𝑘 𝑋)) = (𝑀 𝐿 / 𝑘(𝑘 𝑋)))
93 csbov1g 6588 . . . . . 6 (𝐿 ∈ ℕ0𝐿 / 𝑘(𝑘 𝑋) = (𝐿 / 𝑘𝑘 𝑋))
94 csbvarg 3955 . . . . . . 7 (𝐿 ∈ ℕ0𝐿 / 𝑘𝑘 = 𝐿)
9594oveq1d 6564 . . . . . 6 (𝐿 ∈ ℕ0 → (𝐿 / 𝑘𝑘 𝑋) = (𝐿 𝑋))
9693, 95eqtrd 2644 . . . . 5 (𝐿 ∈ ℕ0𝐿 / 𝑘(𝑘 𝑋) = (𝐿 𝑋))
9796oveq2d 6565 . . . 4 (𝐿 ∈ ℕ0 → (𝑀 𝐿 / 𝑘(𝑘 𝑋)) = (𝑀 (𝐿 𝑋)))
9892, 97eqtrd 2644 . . 3 (𝐿 ∈ ℕ0𝐿 / 𝑘(𝑀 (𝑘 𝑋)) = (𝑀 (𝐿 𝑋)))
9998ad2antll 761 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) → 𝐿 / 𝑘(𝑀 (𝑘 𝑋)) = (𝑀 (𝐿 𝑋)))
10021, 91, 993eqtrd 2648 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) → (𝐼‘((𝐿𝐸𝑌) · (𝑇𝑀))) = (𝑀 (𝐿 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  Vcvv 3173  csb 3499  ifcif 4036  cmpt 4643  cfv 5804  (class class class)co 6549  Fincfn 7841  0cn0 11169  Basecbs 15695  Scalarcsca 15771   ·𝑠 cvsca 15772  0gc0g 15923   Σg cgsu 15924  Mndcmnd 17117  .gcmg 17363  mulGrpcmgp 18312  Ringcrg 18370  CRingccrg 18371  LModclmod 18686  var1cv1 19367  Poly1cpl1 19368   Mat cmat 20032   matToPolyMat cmat2pmat 20328   decompPMat cdecpmat 20386   pMatToMatPoly cpm2mp 20416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-ot 4134  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-ofr 6796  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-sup 8231  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-fz 12198  df-fzo 12335  df-seq 12664  df-hash 12980  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-hom 15793  df-cco 15794  df-0g 15925  df-gsum 15926  df-prds 15931  df-pws 15933  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mhm 17158  df-submnd 17159  df-grp 17248  df-minusg 17249  df-sbg 17250  df-mulg 17364  df-subg 17414  df-ghm 17481  df-cntz 17573  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-cring 18373  df-subrg 18601  df-lmod 18688  df-lss 18754  df-sra 18993  df-rgmod 18994  df-assa 19133  df-ascl 19135  df-psr 19177  df-mvr 19178  df-mpl 19179  df-opsr 19181  df-psr1 19371  df-vr1 19372  df-ply1 19373  df-coe1 19374  df-dsmm 19895  df-frlm 19910  df-mamu 20009  df-mat 20033  df-mat2pmat 20331  df-decpmat 20387  df-pm2mp 20417
This theorem is referenced by:  pm2mp  20449
  Copyright terms: Public domain W3C validator